Elneo

2 reaㅗ

MODULAR ELECTRONIC DEVICES

TECHNICAL CATALOGUE

ELKO EP

We are traditional, innovative and purely Czech development manufacturer of electronic devices and we have been your partner in the field of electroinstallations for 27 years.

ELKO EP employs about 330 people, exports its products to more than seventy countries, and has representatives in fifteen foreign branches. Company of the Year of the Zlín Region, Visionary of the Year, Global Exporter of the Year, Participation in the Czech TOP 100, these are just some of the awards received. Still, we are not finnished. We are constantly striving to move forward in the field of innovation and development. That's our primary concern

Millions of relays, thousands of satisfied customers, hundreds of our own employees, twenty seven years of research, development and production, fifteen foreign branches, one company. ELKO EP, innovative- a purely Czech company based in Holešov, where development, production, logistics, service and support go hand in hand. We primarily focus on developing and manufacturing systems for building automation in the residential, commercial and industrial sector, a wide range of Smart city facilities and the so-called Internet of Things (IOT).

Facts and stats

Product Lines ELKO EP

2 reடaப

inels

Timers/Relays

Time relays, auxiliary relays, installation contactors, memory and bistable relays, staircase switches, time switches, twilight and light switches, dimmers and light intensity controllers, power supplies and bell transformers, controlling and signalling devices.

Monitoring/Protection relays
www.elkoep.com/monitoring Voltage relays 1 -phase and 3 -phase (undervoltage, overvoltage, phase failure, phase asymmetry and ph
current relays, level relays, thermostats, light indicator of voltage, power factor and frequency monitoring.

Wireless electro-installation iNELS RF
www.elkoep.com/wireless Components of smart wireless system can be easily and quickly used in existing buildings where it is not desirable to cut
holes for cables (e.g. add/change a light switch when changing room layouts). However, it is also possible to assemble a holes for cables (e.g. add/change a light switch when changing room layouts). However, it is also possible to assemble a
complete system for apartment or house control, intelligent control of heating, blinds or scene settings. When using the LAN-RF gateway, the entire installation can also be controlled by an application from a mobile phone, tablet or television.

Hotel Wireless Retrofit (HRESK) www.elkoep.com/retrofit Hotel Room Energy Saving Kit - is a complete solution designed primarily for existing hotel rooms and is based on the iNELS RF wireless system. II focuses on the following areas: "Energy savings": switching off all appliances when leaving the room or
not overheating/not overcooling, "Comfort" - all out of bed and "Safety": bell, guest in the room, maid, visitor.

inEs

Wired electro-installation iNELS BUS
www.elkoep.com/wired The sensors and actuators, together with the central unit, which is the heart of the system, communicate via a 2 -wires and
enable the built up a larger installation for family houses, villas, hotels and buildings. Individual functions of elements are parameterized in iDM SW, so simple and more complex actions can be set.

Hospitality Hotel (GRMS)

www.elkoep.com/hospitality
-
w $0: \square$
Lighting control
iNELS offer a vari
www.elkoep.com/lighting NELS offer a variety of lighting control solutions for all types of light sources: from simple (dimmers from he RELAY range), LED dimmers) also includes units for light control via DALI and DMX bus.

Innovation of single-function time relays CRM-81J and CRM-83J

We have recently added a rotary switch to set the time range on the front panel, thus unifying several variants into one type This allowed us to extend the time range up to a unifying several variants into one type. This allowed us to extend the time range up to maximum of 100 h instead of the original 10 h . Functions controlled by the supply voltage
connection now have the possibility to inhibit the ongoing delay by applying voltage via the control input. Another visible change in this year's news, incl. one-function is the transition to a new design of 1-MODULE boxes, which brings easier installation on a DIN rail and higher resistance to vibrations thanks to a reinforced spring on the latch. You can
find them under the new type designations CRM-181J and CRM-183J. find them under the new type designations CRM-181J and CRM-183J.

Staircase switch CRM-4 and CRM-46

Automatic stair switch, are used for delayed switching off of lighting in stairs, corridors and other areas, including the possibility of delayed deceleration of corridoors and other areas, incluaing the possiove undergone innovations, both in terms of vision and parameters. The innovation brings several parameter improvements:

- increase of the possible load of the control buttons to 100 mA
- signaling of an ongoing delay on the product
- possibility to switch off the load before the set delay has elapsed
- replacing the slide switch with a rotary switch

The original CRM-42 and CRM-42/F are now replaced by a new product with the type designation CRM-46. It and also adds two new ones

- function of impulse relay and impulse relay with delay

Timing relays on DIN rail and for PLUG-IN

New types of time relays have an extended time range of $0.05 \mathrm{~s}-30$ days. Available only with universal supply voltage $12-240 \mathrm{~V}$ AC/DC. Offers innovated functions you know from the CRM-91H, including some brand new ones. The relay with multiple output contacts has option to set the mode of second ev. third contact thanks to the added rotary potentiometer on the product panel. Relays with only mode. We divide individual types according to control inputs:
On DIN rail:
CRM-111H, CRM- 113 H - commonly used voltage-dependent input, which you know from CRM-91H/93H CRM-121H-galvanically separated control input, allowing to control functions by independent external voltage
CRM-131 -

The socket:
PTRM-216KP and PTRM-216TP - commonly used voltage-dependent input, which you know from PRM-91H/9ZH PTRM-216 Kand PTRM-216T - potential-free input, for control of functions without voltage PTRA-216K and PTRA-216T - three voltage-dependent inputs (START, NHHIBT, RESET) for radvanced function control.

Timers/Relays		
TIME RELAYS - MULTIFUNCTION	DESIGN	
CRM-161 \| Multifunction time relay - economy version (CRM-61 INNOVATION)	(1-MODULE)	12
CRM-91H, CRM-93H \| Multifunction time relays - BESTSELLER	(1-MODULE)	13
CRM-91HE \| Multifunction time relay with external potentiometer	(1-MODULE)	14
* CRM-101 \| Energy-saving time relay	(1-MODULE)	16
~" CRM-111H, CRM-113H \| Multifunction time relay with Inhibit delay	(1-MODULE)	18
uct CRM-121H \| Multifunction time relay with galvanically separated control input	(1-MODULE)	20
	(1-MODULE)	22
CRM-82TO \| TRUE OfF delay time relay	(1-MODULE)	24
TIME RELAYS - SINGLEFUNCTION, SPECIAL		
CRM-2T \| STAR (λ)/DELTA (Δ) time relay	(1-MODULE)	25
CRM-181J, CRM-183J \| Singlefunction time relays (INNOVATION CRM-81J, CRM-83J)	(1-MODULE)	26
CRM-2H \| Asymmetric flasher	(1-MODULE)	28
CRM-2HE \| Asymmetric flasher with external potentiometers	(1-MODULE)	29
SJR-2 \| ON DELAY time relay, 2 -channels	(1-MODULE)	30
TIME RELAYS - PLUG-IN		
** PTRM-216TP, PTRM-216KP \| Multifunction time relay with Inhibit delay	(11-PIN)	31
๙"PTRM-216T, PTRM-216K \| Multifunction time relay with potential-free control input	(11-PIN)	32
๙゙ PTRA-216T, PTRA-216K \| Multifunction time relay with three control inputs	(11-PIN)	33
time relays - digital		
CRM-100 \| Multifunction time relay with LCD display	(1-MODULE)	34
PDR-2/A, PDR-2/B \| Programmable digital relays	(3-MODULE)	36
STAIRCASE SWITCHES		
CRM-46 \| Smart staircase switch (INNOVATION CRM-42, CRM-42F)	(1-MODULE)	38
CRM-4 \| Staircase switch (INNOVATION)	(1-MODULE)	40
TIME RELAYS - IN THE INSTALLATION BOX		
SMR-K, SMR-T, SMR-H, SMR-B \| Super-multifunction time relays	(BOX)	42
TIME SWITCHES		
SHT-1, SHT-1/2, SHT-3, SHT-3/2 \| Digital time switches with weekly/yearly program	(2-MODULE)	45
SHT-4, SHT-6, SHT-7 \| Digital time switches - SHT-4 (astro), SHT-6 (with synchronization), SHT-7 (NFC)	(2-MODULE)	46
DCFR-1 \| Receiver DCF 77 for SHT-6 in increased protection	(1P655)	47
\checkmark ATS-1DR \| Analog time switches with daily program	(1-MODULE)	48
\sim ATS-2D, ATS-2DR, ATS-2WR \| Analog time switches with daily/weekly program	(2-MODULE)	49
AUXILIARY RELAYS		
VS116B/230, VS116K, VS116U, VS308K, VS308U, VS316/24, VS316/230 \| Auxiliary relays	(BOX $11-\mathrm{MODULE}$)	51
INSTALLATION CONTACTORS		
VS120, VS220, VS420, VS425, VS440, VS463 \| Installation contactors	(1/2/3-MODULE)	55
VSM220, VSM425 \| Installation contactors with manual control	(1/2-MODULE)	56
MEMORY AND BISTABLE (IMPULSE) RELAYS		
MR-41, MR-42 \| Memory relays	(1-MODULE)	61
* ${ }^{\text {a }}$ BR-216, BR-220, BR-232 \| Bistable relay	(1-MODULE)	62
TWILIGHT AND LIGHT SWITCHES		
SOU-1 \|Twilight switch - analog	(1-MODULE)	64
SOU-2 \| Twilight and light digital switch with integrated time switch	(2-MODULE)	65
SOU-3 \| Twilight and light switch with integrated sensor in increased protection	(1P655)	66
POWER SUPPLIES AND BELL TRANSFORMERS		
PSB-10, PS-30-R \| Power supplies, switching - stabilized	(BOX/3-MODULE)	69
PS1M, PS2M, PS3M, PS4M \| Power supplies, switching - stabilized (INNOVATION PS-10, PS-30, PS-100)	(1/2/3/4/4-MODULE)	70
ZSR-30, ZNP-10 \| Power supply, switching - stabilized (ZSR-30), unstabilized (ZNP-10)	(3-MODULE)	72
ZTR-8-8, ZTR-8-12, ZTR-15-12 \| Bell transformers	(2/3-MODULE)	73
DIMMERS AND LIGHT INTENSITY CONTROLLERS		
DIM-15, SMR-M \| Universal dimmers	(1-MODULE/BOX)	76
DIM-2 \| Dimmer with stair case switch function	(1-MODULE)	78
SMR-S \| Controlled dimmer	(BOX)	79
DIM-6 \| Controlled universal dimmer	(6-MODULE)	80
DIM6-3M-P \| Expandable power module for dimmer DIM-6	(3-MODULE)	81
LIC-1 \| Light intensity controller with direct output R-L-C-ESL-LED	(1-MODULE)	82
LIC-2 \| Light intensity controller with analog output 0(1)-10V	(1-MODULE)	83
RFDEL-76M \| Universal dimmer, 6 -channels	(6-MODULE)	84
CONTROLLING AND SIGNALLING MODULES		
USS \| Controlling and signalling modules	(1-MODULE)	86

Digital

Multifunction

		5		$\bar{\vdots}$
CRM-161	CRM-91H	CRM-93H	CRM-91HE	CRM-101
6 functions, 6 time range $1 \times 8 \mathrm{~A}$ switch, power supply $A C$ 24-240 V, DC 24 V, economy version of page 12	10 functions, 10 time ranges, $1 \times$ output 16 A changeover/SPDT, multivoltage or 230 V page 13	As CRM-91H, but output $3 \times 8 \mathrm{~A}$ changeover/SPDT. page 13	$\begin{gathered} \text { As CRM-91H but } \\ \text { with time setting } \\ \text { by exteral } \\ \text { potentiomer } \\ \text { (for frequent seting). } \\ \text { page } 14 \end{gathered}$	Relay for the automati switching on and off using connected sens (motion detector and magnetic door co page 16 page 16

$$
\begin{aligned}
& \underset{\substack{\text { circuits. } \\
\text { page } 24}}{ }
\end{aligned}
$$

Singlefunction, special

PLUG-IN

		$\begin{aligned} & = \\ & \vdots \end{aligned}$			
crM-2T	CRM-181]	CRM-183)	CRM-2H	CRM-2HE	SJR-2
Star/delta timer relay $\text { page } 25$	Variants of 4 functions with time range $1 \times 16 A$ switch. UNI powersupply.	$\begin{gathered} \text { As CRMM } 181 \mathrm{~J}, \\ \text { but output } 1 \times 16 \mathrm{~A} \\ +2 \times 8 \text { sivith. } \\ \text { page } 26 \end{gathered}$	Asymmetric cycler independent time page 28	As CRM-2H, but time setting by external potentiometers (fo frequent setting). page 29	$2 x$ delay on, gradua switching of highloads. page 30

Staircase switches

x functions controlled by inputs START, INHIBIT, RESET

- functions controlled by inputs START, STOP

CRM-161 | Multifunction time relay - economy version

Time relay - MULTIFUNCTION

Technical parameters	CRM-161
Power supply	
Supply terminals:	A1-A2
Voltage range:	AC 24-240 V (AC 50/60 Hz) and DC 24 V
Power input (max):	2 VA 1.5 W
Supply voltage tolerance:	-15%; 10%
Supply indication:	green LED
Time circuit	
Number of functions:	6
Time ranges:	0.15 -10 hrs
Time setting:	rotary switch and potentiometer
Time deviation:	5% - mechanical setting
Repeat accuracy:	0.2% - set value stability
Temperature coefficient:	$0.01 \% /{ }^{\circ} \mathrm{C}, \mathrm{at}=20^{\circ} \mathrm{C}\left(0.01 \% / /^{\circ} \mathrm{F}, \mathrm{at}=68{ }^{\circ} \mathrm{F}\right)$
Output	
Number of contacts:	$1 \times$ changeover/SPDT (AgNi)
Currentrating:	8 A/AC1
Breaking capacity:	2000 VA/AC1, $192 \mathrm{~W} / \mathrm{DC}$
Switching voltage:	250V AC/24V DC
Max. power dissipation:	0.6 W
Output indication:	multifunction red LED
Mechanical life:	10.000 .000 operations
Electrical life (AC1):	50.000 operations
Control	
Control. terminals:	Al-S
Load between S-A2:	Yes
Impulse length:	min. $25 \mathrm{~ms} /$ max unlimited
Reset time:	max. 150 ms
Other information	
Operating temperature:	$-20^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}\left(-4{ }^{\circ} \mathrm{Fto} 131{ }^{\circ} \mathrm{F}\right)$
Storage temperature:	$-30^{\circ} \mathrm{Cto}+70^{\circ} \mathrm{C}\left(-22^{\circ} \mathrm{F}\right.$ to $\left.158{ }^{\circ} \mathrm{F}\right)$
Dielectrical strength:	$4 \mathrm{kV} \mathrm{AC} \mathrm{(supply} \mathrm{-} \mathrm{output)}$
Operating position:	any
Mounting:	din rail En 60715
Protection degree:	IP40 from front pane/IP20 terminals
Overvoltage category:	III.
Pollution degre:	2
Max. cable size (mm):	solid wire max. 1×2.5 or $2 \times 1.5 /$ with sleeve max. 1×2.5 (AWG 12)
Dimensions:	$90 \times 17.6 \times 64 \mathrm{~mm}\left(3.5^{\prime \prime} \times 0.7^{\prime \prime} \times 2.5^{\prime \prime}\right)$
Weigh:	$62 \mathrm{~g}(2.2 \mathrm{oz}$)
Standards:	EN 61812-1

Indication of operating states

Examples of signaling functiona

Functione

Multifunction economy version of time relay for universal use in
automation controland regulation in in houseinstal autom
Univeral and time-range setting by - Time scale 0.1 s - 10 hrs divided into 6 ranges:
($0.1 \mathrm{~s}-1 \mathrm{~s} / 1 \mathrm{~s}-10 \mathrm{~s} / 0.1 \mathrm{~min}-1 \mathrm{~min} / 1 \mathrm{~min}-10 \mathrm{~min} / 0.1 \mathrm{hrs}-1 \mathrm{~h} / 1 \mathrm{~h}-10 \mathrm{hrs}$). Output contact: $1 \times$ changeover/SPDT 8 A.

- Multifuu
status.

Description
Conser

Connection

Possibility to connect load onto controlling input It is possible to connect the load (e.g.: contactor)
between terminals S - 2 , without any interruption of between terminals $s-A$,
correct relay function

CRM-91H, CRM-93H | Multifunction time relays

- Multifunction time relay for universal use in automation, control and regulation or in house installations
Comfortable and well-arranged function and time-range setting by - Mutary swifunction
status. status.

Description
CRM-93H

Connection

Possibility to connect load onto controlling input It is possible to connect the load (e.g.: contactor) between terminals S-A2, without any interruption of correct relay function.

Indication of operating states
Examples of signaling

Function
Function (page 15)

Control by external control unit - potentiometer (can be placed/mounted for example on switch board doors or in panel).
10 functions:
5 time functions controlled by supply voltage 1 function of latching relay.
Possible to connect external potentiometer - max. distance 10 m (32.8 ft .) from relay

Description


```
OFF DELAY
Input volage \(U\)
Input votage \(u\) must be applied continuously,
When triges switc 5 is closed, relay contacts R
change state When trige
```



``` eneraized state. II if input voltage \(U\) is remo
relay contacts \(R\) return to their sheff state.
```


- Time relay for automatic switching ON and OFF of electricity in hotel rooms, with the help of connected sensors (replacement of common card switches).
- 2 control inputs - potential-free contacts:

IN1 (MD) - motion detector
IN2 (MC) - magnetic door contact.
Adjustable configuration of control inputs:
NO - normally open/NC - normally closed, according to the type of

- Time delay t1 (delayed switch-off of electricity).

Adjustable in the range of $1-60 \mathrm{~min}$ in minute steps.
Time delay t2 (input blocking for motion detector),
Adjustable continuously in the range $0.5-10 \mathrm{~s}$.
The multifunction red LED flashes or lights up depending on the operating status.

Description

Setting of control inputs configuration

MODE	IN1	IN2
1	NO	NO
2	NO	NC
3	NC	NO
4	NC	NC

Example settings:
-door contact is NC (closed when the door is closed) - motion detector has NC contact (Closed a t rest, opens when motion is detected) -MODE must be set to position 4

Connection

(1) Arrival of persons in the room

When people enter the room, I 2 is activated (MC - magnetic door contact)

- closes the relay (turns on the electricity) and at the same time the delay t 1 d 42 starts
the red LED flashes depending on the delay in progress.
Contact IN1 (MD - motion detector), responds to the
in the room the delay t , the MD operation is blocked
if $\mathbb{N} 1$ is activated after the delay t 2 has elapsed or if the contact N 1 is already closed, the delay $t 1$ ends and the red LED lights up permanently. The relay remains permanently closed.
(2) Person leaving the room

When the person leaves the room, contact $\operatorname{NN} 2$ is activated delays $t 1$ and $t 2$ start at the same time
there is a movement in the room after the delay t 2 has elapsed, I N is activated, the delay t 1 is terminated and the relay remains closed
(4) No movement after delay t2

When people enter the room, IN2 is activated (MC - magnetic door contact) closes the relay (turns on the electricity) and at the same time the delay ${ }^{t 1}$ and $t 2$ starts
into the room), then after the delay +1 the has elapsed (e.g. a brief insight opens (switches off the electricity).

© Movement at rest

Idle state - in case the IN1 does not activate the relay (switches off the electricity) after the person leaves the room after the delay $t 2$ has elapsed. However, another person remains in the room motionless (e.g. sleeping).
if IN1 is activated (e.g. by waking up a sleeping person), the relay closes if $\mathbb{N 1} 1$ is activated (e.g. by waking up a s.
without delay (turns on the electricity).
(3) Last person leaving the room

When the person leaves the room, contact $\operatorname{IN} 2$ is activated

- delays 11 and $t 2$ start at the same time
-if $\mathbb{N} 1$ is not activated after the delay $t 2$ has elapsed (there is no movement in the room), then after the delay t)

Technical parameters	CRM-111H	CRM-113H
Power supply		
Supply terminals:	A1-A2	
Voltage range:	AC/DC $12-240 \mathrm{~V}$ (AC 50/60 Hz)	
Power input (max):	2 VA 1.5 W	$2.5 \mathrm{VA} / 1.5 \mathrm{~W}$
Supply voltage tolerance:	$-15 \% ;+10 \%$	
Supply indication:	green LED	
Time circuit		
Number of functions:	11	10
Time ranges:	$50 \mathrm{~ms}-30$ days	
Time setting:	rotary switches and potentiometers	
Time deviation:*	5% - mechanical setting	
Repeat accuracy:	0.2% - set value stability	
Temperature coefficient:	$0.01 \% /{ }^{\circ} \mathrm{C}, \mathrm{at}=20^{\circ} \mathrm{C}\left(0.01 \% / /^{\circ} \mathrm{F}, \mathrm{at}=68{ }^{\circ} \mathrm{F}\right)$	
Output		
Number of contacts 1 :	$1 \times$ changeover/SPDT (AgNi)	
Curent rating:	$16 \mathrm{~A} / \mathrm{AC1}$	
Breaking capacity:	4000 VA/AC1, $384 \mathrm{~W} / \mathrm{DC}$	
Electrical life (AC1):	50.000 operations	
Number of contacts 2 (3):	\times	2xchang./DPDT (AgNi)
Current rating:	\times	$8 \mathrm{~A} / \mathrm{AC1}$
Breaking capacity:	\times	2000 VA/AC1, $192 \mathrm{~W} / \mathrm{DC}$
Electrical life (AC1):	${ }^{\text {x }}$	10.000 operations
Switching voltage:	250V AC/24V DC	
Max. power dissipation:	1.2 W	2.4 w
Output indication:	multifunction red LED	
Mechanical life:	10.000.000 operations	
Control		
Control. terminals:	A1-S	
Load between S-A2:	Yes	
Impulse length:	min. $25 \mathrm{~ms} / \mathrm{max}$. unlimited	
Reset time:	max. 150 ms	
Other information		
Operating temperature:	$-20^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}\left(-4 \mathrm{~F}^{\circ} \mathrm{fol} 131{ }^{\circ} \mathrm{F}\right)$	
Storage temperature:	$-30^{\circ} \mathrm{Cto}+70^{\circ} \mathrm{C}\left(-22^{\circ} \mathrm{F}\right.$ to $\left.1588^{\circ} \mathrm{F}\right)$	
Dielectrical strength:		
supply - output 1	4 kVac	
supply - output 2 (3)	\times	1 kVac
output 1 - output 2	x	1 kVac
output 2 - output 3	\times	1 kVAC
Operating position:	any	
Mounting:	din rail en 60715	
Protection degree:	\|P40 from front pane//IP22 terminals	
Overvoltage category:	III.	
Pollution degree:	2	
Max. cable size (mm²):	solid wire max. 1×2.5 or $2 \times 1.5 /$ with sleeve max. 1×2.5 (AWG 12)	
Dimensions:	$90 \times 17.6 \times 64 \mathrm{~mm}\left(3.5^{\prime \prime} \times 0.7^{\prime} \times 2.5^{\prime \prime}\right)$	
Weight:	$62 \mathrm{~g}(2.2 \mathrm{zz}$)	$85 \mathrm{~g}(3 \mathrm{oz}$)
Standards:	En 61812-1	

- Multifunction time relay for universal use in automation, control and
regulation or in house installations. regulation or in house installations.
function, can use the control input to in Mode selection - according to the set function, permause). - Mode selection - according to the set function, permanently closed,
permanently open, function of MEMORY LATCH with delay (CRM-111H)/ switching of the second output contact according to supply voltage Multifunction red LED flashes or shines depending on the operating status.

Description

Possibility to connect load onto controlling input It is possible to connect the load (e.g. : contactor) b.
without any interruption of correct relay function.

Indication of operating states

Mode selection

Function
For a description of the functions on page 21

EAN code RM-121H/UNI: 8595188175555	
Technical parameters	CRM-121H
Power supply	
Supply terminals:	A1-A2
Voltage range:	AC/DC $12-240 \mathrm{~V}$ (AC 50/60 Hz)
Power input (max):	2VA/1.5W
Supply voltage tolerance:	-15%; 10%
Supply indication:	green LED
Time circuit	
Number of functions:	11
Time ranges:	50 ms -30 days
Time setting:	rotary switch and potentiometer
Time deviation:*	5% - mechanical setting
Repeat accuracy:	0.2% - set value stability
Temperature coefficient:	$0.01 \% \rho^{\circ} \mathrm{C}, \mathrm{at}=20^{\circ} \mathrm{C}\left(0.01 \% / \mathrm{F}, \mathrm{F}, \mathrm{at}=68{ }^{\circ} \mathrm{F}\right)$
Output	
Number of contacts	1x changeover/SPDT (AgNi)
Currentrating:	16 A/AC1
Breaking capacity:	$4000 \mathrm{VA} /$ AC $1,384 \mathrm{~W} / \mathrm{DC}$
Switching voltage:	$250 \mathrm{VAC} / 24 \mathrm{VDC}$
Max. power dissipation:	1.2 W
Output indication:	multifunction red LED
Mechanical life:	10.000.000 operations
Electrical life (AC1):	50.000 operations
Control	
Control. terminals:	51-52
Impulse length:	min. $25 \mathrm{~ms} /$ max unlimited
Reset time:	max. 150 ms
Other information	
Operating temperature:	$-20^{\circ} \mathrm{C} \mathrm{to} \mathrm{+} 55^{\circ} \mathrm{C}\left(-4 \mathrm{C}^{\mathrm{F}}\right.$ to $\left.131{ }^{\circ} \mathrm{F}\right)$
Storage temperature:	$-30^{\circ} \mathrm{Cto}+70^{\circ} \mathrm{C}\left(-22^{\circ} \mathrm{F}\right.$ to $\left.158{ }^{\circ} \mathrm{F}\right)$
Dielectrical strength:	4 kV AC (supply - output) 4 kV AC (supply - control input)
Operating position:	any
Mounting:	DIN rail EN 60715
Protection degree:	\|P40 from front panel//P10 terminals
Overvoltage category:	III.
Pollution degree:	2
Max. cable size (mm²):	solid wire max. 2×2.5 or $1 \times 4 /$ with sleeve max. 1×2.5 or 2×1.5 (AWG 12)
Dimensions:	$90 \times 17.6 \times 64 \mathrm{~mm}\left(3.55^{\prime \prime} \times 0.7^{\prime \prime} \times 2.5^{\prime \prime}\right)$
Weight:	$72 \mathrm{~g}(2.50 \mathrm{oz}$)
Standards:	EN 61812-1

* for adjustable delay $<100 \mathrm{~ms}$, a time deviation of $\pm 10 \mathrm{~ms}$ applies

function

For a description of the functions on page 21 .

- Multifunction time relay for universal use in automation, control and regulation or in house installations.
- Galvanically separated control input (Power Trigger)
- All functions initiated by the supply voltage, except for the flasher
function, can use the control input to inhibit the - Mode selection - according to the sef function, permanently closed, permanently open, function of MEMORY LATCH with delay.
Time scale $50 \mathrm{~ms}-30$ days divided into 10 ranges.
Multifunction red LED flashes or shines depending on the operating status.

When the supply voltage is applied, the relay is open. If the control contact
is closed, the relay closes and the time delay T starts. It does not matter the length of the control pulse. When the timing is complete, the relay opens. If the
control contact is closed during timing, the relay opens immediately. Each time control contact is closed during timing, the relay opens immedia
the control contact closes during relay timing, it changes status.

Function
a. ON DELAY

When the supply voltage is applied, the time delay T begins. When the timing is complete, ON DELAY with Inhibit

If the control contact is closed and the supply voltage is connected, the relay is opened tit the control contact open
When the timing is complete, the relay closes. If the control contact is closed during
timing, the timing is interupted and continues only after the control contact opens.
b. INTERVAL ON

After supply voltage relay closes and starts the delay time T. After the end of the timing
relay opens and this state lasts until the supply voltage is is disconnected. INTERVAL ON with Inhibit

Ifthe control contactis closed and the supply volage is connected, the relay will close and the timing will start stis only aftere the the control contact chas bseene opened. When the timing is complete, the relay opens. If the control contact is closed dur
timing, the timing is interupted and continues only after the control contact opens c. FLASHER-ON first

After supply voltage relay closes and starts the delay time T. After the end of the timing
relay opens and again runs delay time T. When the timing is complete, the relay closes

FLASHER - OFF first

If the control contact is closed during timing: this does not aff ect the operation of the
cycle. If the contro contact is closed and the supply yoltage is connected, the cycler stcer. IT the control contact is
d. MEMORY LATCH

e. OFF DELAY

When the supply voltage is applied, the relay is open. When the control contact is closed,
the relay closes. When the control contact opens, the time delay T Tegins. If the control contact is closed durine timing, the time is reset and the relay remains closed. When
he control contact opens, the time delay T Starts again and opens when the relay closes.

c(UL) us	
RM-131H/UNI: 8595188175562	
Technical parameters	CRM-131H
Power supply	
Supply terminals:	A1-A2
Voltage range:	AC/DC $12-240 \mathrm{~V}$ ($\mathrm{CAC} \mathrm{50/60} \mathrm{Hz)}$
Power input (max):	2VA/1.5W
Supply voltage tolerance:	-15%; 10%
Supply indication:	green LED
Time circuit	
Number of functions:	11
Time ranges:	50 ms -30 days
Time setting:	rotary switch and potentiometer
Time deviation:*	5%-mechanical setting
Repeat accuracy:	0.2%-set value stability
Temperature coefficient:	$0.01 \% /{ }^{\circ} \mathrm{C}, \mathrm{at}=20^{\circ} \mathrm{C}\left(0.01 \% / /^{\left.\circ \mathrm{F}, \mathrm{at}=68{ }^{\circ} \mathrm{F}\right)}\right.$
Output	
Number of contacts	$1 \times$ changeover/SPDT (AgNi)
Current rating:	$16 \mathrm{~A} / \mathrm{AC1}$
Breaking capacity:	4000 VA/AC1, 384 W/DC
Switching voltage:	$250 \mathrm{VaC} / 24 \mathrm{VDC}$
Max. power dissipation:	1.2 W
Output indication:	multifunction red LED
Mechanical life:	10.000 .000 operations
Electrical life (AC1):	50.000 operations
Control	
Load between I, S, R-A2:	Yes
Control. terminals:	I, S, R-A1
Impulse length:	min. $25 \mathrm{~ms} / \mathrm{max}$. unlimited
Reset time:	max. 150 ms
Other information	
Operating temperature:	$-20^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}\left(-4 \mathrm{~F}^{\text {F to } 131}{ }^{\circ} \mathrm{F}\right)$
Storage temperature:	$-30^{\circ} \mathrm{Cto}+70^{\circ} \mathrm{C}\left(-22^{\circ} \mathrm{F}\right.$ to $\left.158{ }^{\circ} \mathrm{F}\right)$
Dielectrical strength:	$4 \mathrm{kV} \mathrm{AC} \mathrm{(supply} \mathrm{-} \mathrm{output)}$
Operating position:	any
Mounting:	diN rail EN 60715
Protection degree:	\|P40 from front panel/IP20 terminals
Overvoltage category:	11.
Pollution degree:	2
Max. cable size (mm):	solid wire max. 1×2.5 or $2 \times 1.5 /$ with sleeve max. 1×2.5 (AWG 12)
Dimensions:	$90 \times 17.6 \times 64 \mathrm{~mm}\left(3.5^{\circ} \times 0.7^{\prime \prime} \times 2.5^{\prime \prime}\right)$
Weight:	$61 \mathrm{~g}(2.2 \mathrm{oz}$)
Standards:	EN 61812-1

* for adjustable delay $<100 \mathrm{~ms}$, a time deviation of $\pm 10 \mathrm{~ms}$ applies

Function
For a description of the functions on page 23

- Multifunction time relay for universal use in automation, control and
regulation or in house installations. regulation or in house installations.
- Mode selection - according to the set function, permanently closed, permanently open, function of MEMORY LATCH with delay - Multifunction red LED flashes or shines depending on the operating status.

Mode selection
FUNC. Settings function mode
The desired function a-jis set with the FUNC rotary switch.
OFF. Output contact open mode

When the supply voltage is applied, the relay is open. If the START control conlact is costh of the control pulse. When the timing is complete, the relay opens. the length of the control pulse. When the timing is complete, the relay opens.
If the START control contact is closed during timing, the relay opens immediately. Each time the control contact closes during relay timing, it changes status.
Closing the INHBIT control contact pauses the timing, after opening the INHIBIT Closing the INHBITT control contact pauses the timing, after opening the INHBITT
control contact the timing continues from the moment of interuption. Closing control contact the timing continues from the moment of interruption. Closing
the RESET control contact immediatle ends the timing and the relay opens, just
like as when the supply voltage is disconnected. ke as when the supply voltage is disconnected.

CRM-131H, PTRA-216T, PTRA-216K

Function

Control input function description:

- Contact TSART Starts the time function
- The RESET contact tsimulates switching the supply voltage on and off

Same for al features:
sactivated whent the START is closed and the supply voltage is connected, the time function
 INHBIT Timing continues from the moment of internutition. is paused.
Listas when the sumply voltages immediately terminates the timing and the relay opens,
IIstas when the supply whagets dysonnected
If the control contact RESET i is closed and then the control contact START is closed, the time
function is activated when the control contact RESET is opened as well as when the supply voltage is connected.
a. ON DELAY with Control Signal

When the supply voltage is applied, the relay is open. If the control contact START is closed,
the time deday starts the time delay 7 Starts. The closing of the estait control contact during timing is ignored.
b. INTERVAL ON with Control Signal

When the supply voltage is applied, the relay is open. When the control contact START is closed, the relaly closes and the time delay Tbegins
If the sTART contro contact is open during timing, the time interval is immediately erminated and the erelay opens.
C. FLASHER - ON first with Control Signa

When the supply voltage is applied, the relay is open. When the START control contact is
closed the relay energizes sand starts the delay timeT Afterthe end of the timing relay opens

d. FLASHER - OFF first with Control Signal

When the supply voltage is applied, the relay is open. When the START control contact is
closed, starts the time delay T.After the end of the timing dised, Sarts the time delay 7 . After the end of the timing relay closes and again runs delay voltage is is isconnected.
e. OFF DELAY

hen the $T=11$ voltage is applied, the relay is open. If the control contact START is closed he relay closes. Ater trippin
iming relay is switched off.
f. SINGLE SHOT

When the supply voltage is applied, the relay is open. When the STATT control contact is
closed, the erlay energizes and starts the delay time T. Ater the end of the timining reala is closed, the relay energizes and starts the delay time T. After the end of the timing relay is
swithed off. The closing of the 5 TTRT control contact during timing is ignored. g. WATCHDOG

 swithed off. Closing control contact 5
the ereay closing time is thus increased.
h. PULSE GENERATOR 0.5 s with Control Signal

When the suply voltage is applied, the e elay is open. When the TART control contact is slosed,
starts the time edelay T. After the end of the timing relay switches for the fixed time $(0.5$ sec). i. INTERVAL ON/OFF

When the supply voltage is applied, the relay is open. When the START control contact is
closed, the relay energizes and starts the delay time swithe terely nerergizes and starts the delay time T. Ater the end of the timing relay is
switched off: By opening the control contact startrelay again closes and starts the delay time .

If the START control contact is open during timing, restart occurs -the relay remains closed
and a new time delay Thegins on/OFF DELAY

When the supply voltage is applied, the relay is open. When the START control contact is

If the START control contact is open during timing, a restart occurs - the relay closes and
a new time delay T begins. When the timing is oomplete, the relay opens.

CRM-181J, CRM-183J | Singlefunction time relays

- Singlefunction time relays are suitable for applications where there is use in automation, control and requlation or in house installations. - Choice of four types: ZR, ZN, BL, OD.
- All functions initiated by the supply voltage can use the control input to inhibit the ongoing delay (pause).
- Multifunction red LED flashes or shines depending on the operating status.

Technical parameters	CRM-181J	CRM-183J
Power supply		
Supply terminals:	A1-A2	
Voltage range:	AC/DC $12-240 \mathrm{~V}$ ((AC 50/60 Hz)	
Power input (max):	2 VA 1.5 W	$2.5 \mathrm{VA} / 1.5 \mathrm{~W}$
Supply voltage tolerance:	$-15 \% ;+10 \%$	
Supply indication:	green LED	
Time circuit		
Time ranges:	$0.15-100 \mathrm{~h}$	
Time setting:	rotary switch and potentiometer	
Time deviation:	5%-mechanical setting	
Repeat accuracy:	0.2%-set value stability	
Temperature coefficient:	$0.01 \% /{ }^{\circ} \mathrm{C}, \mathrm{at}=20^{\circ} \mathrm{C}\left(0.01 \% / /^{\circ} \mathrm{F}, \mathrm{at}=68^{\circ} \mathrm{F}\right)$	
Output		
Output contact 1:	$1 \times$ changeover/SPDT (AgNi)	
Current rating:	$16 \mathrm{~A} / \mathrm{AC1}$	
Breaking capacity:	4000 VA/AC1, $384 \mathrm{~W} / \mathrm{DC}$	
Electrical life (AC1):	50.000 operations	
Output contact 2 (3):	\times	2xchang./DPDT (AgNi)
Curent rating:	\times	$8 \mathrm{~A} / \mathrm{AC1}$
Breaking capacity:	\times	2000 VA/AC1, $192 \mathrm{~W} / \mathrm{DC}$
Electrical life (AC1):	\times	10.000 operations
Switching voltage:	250V AC/24V DC	
Max. power dissipation:	1.2 W	2.4 W
Output indication:	multifunction red LED	
Mechanical life:	10.000.000 operations	
Control		
Control terminals:	A1-S	
Load between S-A2:	Yes	
Impulse length:	min. $25 \mathrm{~ms} /$ max unlimited	
Reset time:	max. 150 ms	
Other information		
Operating temperature:	$-20^{\circ} \mathrm{Cto}+55^{\circ} \mathrm{C}\left(-4{ }^{\circ} \mathrm{Fto} 131{ }^{\circ} \mathrm{F}\right)$	
Storage temperature:	$-30^{\circ} \mathrm{Cto}+70^{\circ} \mathrm{C}\left(-22^{\circ} \mathrm{F}\right.$ to $\left.158{ }^{\circ} \mathrm{F}\right)$	
Dielectrical strength:		
supply - output 1	4 kV AC	
supply - output 2 (3)	x	1 kV AC
output 1 - output 2	\times	1 kV AC
output 2 - output 3	\times	1 kV AC
Operating position:	any	
Mounting:	DIN rail EN 60775	
Protection degree:	IP40 from front pane//IP22 terminals	
Overvoltage category:	III.	
Pollution degree:	2	
Max. cable size (mm):	solid wire max. 1×2.5 or $2 \times 1.5 /$ with sleeve max. 1×2.5 (AWG 12)	
Dimensions:	$90 \times 17.6 \times 64 \mathrm{~mm}\left(3.5^{\prime \prime} \times 0.7^{\prime \prime} \times 2.5{ }^{\prime \prime}\right)$	
Weight:	$61 \mathrm{~g}(2.2 \mathrm{zz}$)	84 g (302)
Standards:		812-1

Description
CPM-183

-		Supply terminals $(\mathrm{A} 1-\mathrm{A} 2)$
Control input (s)		
		Output contacts 3 $(35-36-38)$
Supply indication		Output indication
Time range setting		
		Fine time setting
Output contacts 2$(25-26-28)$	[170	
	(3)3	
	252628	
	(1)38	
	$\underbrace{15}$	Output contacts 1 (15-16-18)

-

CRM-181J
CRM-183J

Possibility to connect load onto controlling input

 It is possible to connect the load (e.g.: contactor)without any interruption of correct relay function.

CRM-181J, CRM-183J | Singlefunction time relays
27

```
Indication of operating states
```


Function
zR: on delay
BL: FLASHER-ON first

When the supply voltage is applied, the time delay T begins. When the timing is complete, the relay closes and this condition continues until the supply voltage is disconnected.

ON DELAY with Inhibit

If the control contact is closed and the supply voltage is connected, the relay is opened and timing does not start until the control contact opens.
When the timing is complete, the relay closes. If the control contact is clo during timing, the timing is interrupted and continues only after the control contact opens.
zN: Interval on

After supply voltage relay closes and starts the delay time T . After the end of the timing relay opens and this state lasts until the supply voltage is disconnected.

INTERVAL ON with Inhibit

If the control contact is closed and the supply voltage is connected, the relay will close and the timing will start only after the control contact has been
opened.
When the timing is complete, the relay opens. If the control contact is closed during timing, the timing is interrupted and continues only after the control contact opens.


```
If the control contact is closed and the supply voltage is connected, the relay
the timing will start only after the control contact has been opened. When the timing is complete, the relay opens.
```

FLASHER - ON first with Inhibit

is ine corrupted act is closedurng an active timer setting, the timing interrupted and continues only after the control contact opens again.
od: off delay

When the supply voltage is applied, the relay is open. When the control contact is closed, the relay closes. When the control contact opens, the time delay Tbegins. If the control contact is closed during timing, the time is reset and the relay remains closed. When the control contact opens, the time delay
T starts again and opens when the relay closes.

CRM-2HE | Asymmetric flasher with external potentiometers

Time relay - SINGLE FUNCTION, SPECIAL	UNI only c (1) us LISTED EAN code CRM-2H/230V: 859518812420 CRM-2H/UNI: 859518811300	
	Technical parameters	CRM-2H
Power supply		
	Supply terminals:	A1 - A2
	Voltage range: $\overline{\text { 亏 }}$	AC/DC $12-240 \mathrm{~V}$ (AC 50/60 Hz)
	Power input (max):	2 VA 1.5 W
	Voltage range: \quad ¢	AC $230 \mathrm{~V}(50 / 60 \mathrm{~Hz})$
	Power input (max):	AC 3VA/1.4W
	Supply voltage tolerance:	-15%; 10%
	Supply indication:	green LED
Function		
	Time scale:	0.15 - 100 day
	Time setting:	rotary switch and potentiometer
	Time deviation:	5% - mechanical setting
	Repeat accuracy:	0.2%-set value stability
	Temperature coefficient:	$0.01 \% /^{\circ} \mathrm{C}, \mathrm{at}=20^{\circ} \mathrm{C}\left(0.01 \% / /^{\circ} \mathrm{F}, \mathrm{at}=68^{\circ} \mathrm{F}\right)$
Output		
	Number of contacts:	1x changeover/SPDT (AgNi)
	Current rating:	16 A/AC1
	Breaking capacity:	$4000 \mathrm{VA} / \mathrm{AC1}, 384 \mathrm{~W} / \mathrm{DC}$
	Inrush current:	$30 \mathrm{~A} / 33 \mathrm{~s}$
	Switching voltage:	$250 \mathrm{VAC} / 24 \mathrm{VDC}$
	Max. power dissipation:	1.2 W
	Output indication:	multifunction red LED
	Mechanical life:	10.000.000 operations
	Electrical life (AC1):	50.000 operations
	Reset time:	max. 150 ms
	Other information	
	Operating temperature:	$-20^{\circ} \mathrm{C}$ to $55^{\circ} \mathrm{C}\left(-4{ }^{\circ} \mathrm{Fto} 131{ }^{\circ} \mathrm{F}\right)$
	Storage temperature:	$-30^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}\left(-22^{\circ} \mathrm{Fto} 158{ }^{\circ} \mathrm{F}\right)$
	Dielectrical strength:	4 kV AC (supply - output)
	Operating position:	any
	Mounting:	DIN rail EN 60715
	Protection degree:	IP40 from front panel/IP20 terminals
	Overvoltage category:	III.
	Pollution degre:	2
	Terminal wire capacity (mm^{2}):	solid wire max. 1×2.5 or $2 \times 1.5 /$ with sleeve max. 1×2.5 (AWG 12)
	Dimensions:	$90 \times 17.6 \times 64 \mathrm{~mm}\left(3.55^{\prime \prime} \times 0.7^{\prime \prime} \times 2.5{ }^{5}\right)$
	Weight	UNI-61g (2.2 OzI), 230-58g (2 oz)
	Standards:	en 61812-1

Symbol

- Flasher with independent adjustable switch ON and switch OFF. Used for regular room ventilation, cyclic dehumidification, light control, circulating pumps, illuminated advertising, etc.
.

1) Asymmetric FLASHER - ON first
2) Asymmetric FLASHER - OFF first

- Function choice is done by an external jumper of terminals S-A1.
- Time scale 0.1 s - 100 days divided into 10 time ranges.
- Time range setting via rotary switch.
- Multifunction red LED flashes or shines depending on the operating status.

Description

Connection
Asymmetric FLASHER - ON first
Asymmetric FLASHER - OFF first

(umper S-A1)

Function
Asymmetric FLASHER-ON first

Asymmetric FLASHER - OFF first

Connection

Symbol

Function
Functions of CRM-2HE are identical with CRM-2H (page: 28).

 SJR-2

Power supply	
Supply terminals:	A1-A2
Voltage range:	AC/DC $12-240 \mathrm{~V}$ ((5 50/60 Hz)
Power input (max):	2.5 VA 1.5 W
Voltage range:	AC $230 \mathrm{~V}(50 / 60 \mathrm{~Hz})$
Power input (max):	AC 4va/2w
Supply voltage tolerance:	- 15%; 10%
Supply indication:	green LED
Function	
Time ranges:	0.15 - 10 day
Time setting:	rotaty switch and potentiometer
Time deviation:	5%-mechanical setting
Repeat accuracy:	0.2% - set value stability
Temperature coefficient:	$0.01 \% /{ }^{\circ} \mathrm{C}$, at $=20^{\circ} \mathrm{C}\left(0.01 \% / /^{\circ} \mathrm{F}, \mathrm{at}=68{ }^{\circ} \mathrm{F}\right)$
Output	
Number of contacts:	$2 \times$ changeover/DPDT (AgNi)
Current rating:	$16 \mathrm{~A} / \mathrm{AC1}$
Breaking capacity:	$4000 \mathrm{VA/AC1}, 384 \mathrm{~W} / \mathrm{DC}$
Inrush current:	$30 \mathrm{~A} / 23 \mathrm{~s}$
Switching voltage:	$250 \mathrm{VAC/24VDC}$
Max. power dissipation:	2.4 w
Output indication:	multifunction red LED
Mechanical life:	10.000 .000 operations
Electrical life (AC1):	50.000 operations
Reset time:	max. 150 ms
Other information	
Operating temperature:	$-20^{\circ} \mathrm{C}$ to $55^{\circ} \mathrm{C}\left(-4{ }^{\circ} \mathrm{Fto} 131^{\circ} \mathrm{F}\right)$
Storage temperature:	$-30^{\circ} \mathrm{Cto} 70^{\circ} \mathrm{C}\left(-22^{\circ} \mathrm{Fto} 158{ }^{\circ} \mathrm{F}\right)$
Dielectrical strength:	
supply- output 1	4 kVac
supply- output 2	4 kV AC
output 1 - output 2	4 kVaC
Operating position:	any
Mounting:	din rail En 60715
Protection degree:	1P40 from front pane//IP20 terminals
Overvoltage category:	III.
Pollution degree:	2
Max. cable size (mm):	solid wire max. 1×2.5 or $2 \times 1.5 /$ with sleeve max. 1×2.5 (AWG 12)
Dimensions:	$90 \times 17.6 \times 64 \mathrm{~mm}\left(3.5^{\prime \prime} \times 0.7^{\prime} \times 2.55^{\prime}\right)$
Weight:	UNI - 78 g (2.80z), 230-75 g (2.6oz)
Standards:	EN 61812-1

Symbol

For gradual switching of high power prevents curent strokes in the main - Double stage ON DELAY

Time scale $0.1 \mathrm{~s}-10$ days divided into 10 ranges:
hrs $/ 0.1$ day - $10 \mathrm{~s} / 0.1 \mathrm{~min}-1 \mathrm{~min} / 1 \mathrm{~min}-10 \mathrm{~min} / 0.1 \mathrm{hrs}-1 \mathrm{~h} / 1 \mathrm{~h}-10$ hrs/0.1 day - 1 day/1 day - 10 days/only ON/only OFF
Time t and t 2 are independantly adjustab

- Time range setting via rotary switch.
- Voltage range: AC 230 V or AC/DC $12-240 \mathrm{~V}$
- Output contact: $2 \times$ changeover/DPDT 16 A.
- Multifunction red LED flashes or shines depending on the operating status.

Description

Supply yoltage indication

Connection

Temperature coefficie Output Number of conta Number of conta Breaking capacity: Switching voltage: Max. power dissipation: Output indication: Mechanical life: Electrical life (AC1) Control
\square

Control		
Control pins:	5 (2) -6	
Impulse length:	min. $25 \mathrm{~ms} / \mathrm{max}$. unlimited	
Reset time:	max. 150 ms	
Other information		
Operating temperature:	$-20^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}\left(-4^{\circ} \mathrm{F}\right.$ to $\left.1311^{\circ} \mathrm{F}\right)$	
Storage temperature:	$-30^{\circ} \mathrm{Cto}+70^{\circ} \mathrm{C}\left(-22^{\circ} \mathrm{Fto} 158{ }^{\circ} \mathrm{F}\right)$	
Dielectrical strength:		
supply - output $1(1,3,4)$	2.5 kV AC	
supply - output $2(8,9,11)$	2.5 kV AC	
output 1 - output 2	2.5 kV AC	
Operating position:	any	
Mounting:	11 pin octal socket	
Protection degree:	IP40 from front panel	
Overvoltage category:		
for supply voltage	III.	
12-150V AC/DC		
for supply voltage	1.	
150-240V AC/DC		
Pollution degree:	2	
Dimensions:		$488 \times 8889 \mathrm{~mm}(1.7 \times \times .7 \times 3.5)$
Weight:	111 g (3.9 oz.)	$108 \mathrm{~g}(3.81 \mathrm{oz}$)
Standards:	En 61812-1	

* for adjustable delay $<100 \mathrm{~ms}$, a time deviation of +10 ms applies

Function
For a description of the functions on page 21
\qquad
$\$$ lifunction time relay for regulation or in house installations.
to select the control element for fine time setting: PTRM-216KP - knob, for easy handling without the need for tools In functio - rotary switch, for the possibility of using a sealable cover. All functions initiated by the supply voltage, except for the flasher function, can use the control input to inhibit the delay (pause). - Mode selection - according to the set function, permanently closed, per-
manently open, and switching of the second output contact according manently open, and switching of the second output contact according ultifunction red LED status.

Connection
Indication of operating states

Mode selection
FUNC. Settings function mode
The desired function $\mathrm{a}-\mathrm{j}$ is set with the FUNC rotary switch.

\#2 INST. Second output contact instantaneous

The second output contact switches according to the supply voltage. The first output contact switches according to the function ($a-j$) set by the

32
 PTRM-216T, PTRM-216K | Multifunction time relay with potential-free control input

PTRA-216T, PTRA-216K | Multifunction time relay with three control inputs

- Multifunction time relay for universal use in automation, control and regulation or in house installations.
- Potential-free control input (Control Switch Trigger)
- Possibility to select the control element for fine time setting: - PTRM-216K - knob, for easy handling without the need for tools. - PTRM-216T - rotary switch, for the possibility of using a sealable cover. - All functions initiated by the supply voltage, except for the flasher function, can use the control input to inhibit the delay (pause). - Mode selection - according to the set function, permanently closed,
permanently open, and switching of the second output contact permanently open, and switch
according to the supply voltage.
- Multifunction red LED flashes or shines depending on the operating status.

Technical parameters	PTRM-216T	PTRM-216K
Power supply		
Power pins:	2,10	
Voltage range:	AC/DC $12-240 \mathrm{~V}$ ((AC 50/60Hz)	
Power input (max):	$2.5 \mathrm{VA} / 1.5 \mathrm{~W}$	
Supply voltage tolerance:	$\pm 10 \%$	
Supply indication:	green LED	
Time circuit		
Number of functions:	10	
Time ranges:	$50 \mathrm{~ms}-30$ days	
Time setting:	rotary switch and potentiometer	
Time deviation*:	5%-mechanical setting	
Repeat accuracy:	0.2% - set value stability	
Temperature coefficient:	$0.01 \% / /^{\circ} \mathrm{C}, \mathrm{at}=20^{\circ} \mathrm{C}\left(0.01 \% / \mathrm{F}, \mathrm{at}=68{ }^{\circ} \mathrm{F}\right)$	
Output		
Number of contacts:	$2 \times$ changeover/SPDT (AgNi)	
Current rating:	16 A/AC1	
Breaking capacity:	4000 VA/AC1, $384 \mathrm{~W} / \mathrm{DC}$	
Switching voltage:	250V AC/24V DC	
Max. power dissipation:	2.4 W	
Output indication:	multifunction red LED	
Mechanical life:	10.000 .000 operations	
Electrical life (AC1):	50.000 operations	
Control		
Control pins:	5-6	
Impulse length:	min. $25 \mathrm{~ms} /$ max unlimited	
Reset time:	max. 150 ms	
Other information		
Operating temperatur:	$-20^{\circ} \mathrm{Cto}+55^{\circ} \mathrm{C}\left(-4{ }^{\circ} \mathrm{Fto} 131{ }^{\circ} \mathrm{F}\right)$	
Storage temperature:	$-30^{\circ} \mathrm{Cto}+70^{\circ} \mathrm{C}\left(-22^{\circ} \mathrm{F}\right.$ to $\left.158{ }^{\circ} \mathrm{F}\right)$	
Dielectrical strength:	2.5 kV AC	
supply - output $1(1,3,4)$		
supply- output $2(8,9,11)$	2.5 kV AC	
output 1 - output 2	2.5 kV AC	
Operating position:	any	
Mounting:	11 pin octal socket	
Protection degree:	IP40 from front panel	
Overvoltage category:		
for supply voltage	III.	
12-150V AC/DC		
for supply voltage	1.	
150-240V AC/DC		
Pollution degree:	2	
Dimensions:		
Weight:		
Standards:	EN61812-1	

* for adjustable delay $<100 \mathrm{~ms}$, a time deviation of $\pm 10 \mathrm{~ms}$ applies

Function

For a description of the functions on page 21
Description

Connection
Indication of operating states

4
Do not apply voltage to

Mode selection
FUNC. Settings function mode
The desired functiona- is set
The desired function a-j is set with the FUNC rotary switch.

- 2 INST. Second output contact instantaneous

The second output contact switches according to the supply voltage. The first output contact switches according to the function (a-j) set by the
trimer

in automation, control and regulation or in house installations.
Possibility to select the control
PTRA-216K - knob, for easy handling witho fine time setting: PTRA-216T- rotary switch, for the possibility of using a sealable cove - Mode selection - according to the set function, permanently closed, permanently open, and switching of the second output contact according to the supply voltage.

- Multifunction red LED flashes or shines depending on the operating status.

Technical parameters	PTRA-216T	PTRA-216K
Power supply		
Power pins:	2,10	
Voltage range:	AC/DC $12-240 \mathrm{~V}$ ((AC 50/60Hz)	
Power input (max.):	2.5 VA 1.5 W	
Supply voltage tolerance:	$\pm 10 \%$	
Supply indication:	green LED	
Time circuit		
Number of functions:	10	
Time ranges:	$50 \mathrm{~ms}-30$ days	
Time setting:	rotary switch and potentiometer	
Time deviation*:	5%-mechanical setting	
Repeat accuracy:	0.2% - set value stability	
Temperature coefficient:	$0.01 \% / /^{\circ} \mathrm{C}, \mathrm{at}=20^{\circ} \mathrm{C}\left(0.01 \% / \mathrm{FF}, \mathrm{at}=68{ }^{\circ} \mathrm{F}\right)$	
Output		
Number of contacts:	$2 \times$ changeover/SPDT (AgNi)	
Currentrating:	$16 \mathrm{~A} / \mathrm{A}^{1}$	
Breaking capacity:	4000 VA/AC1, $384 \mathrm{~W} / \mathrm{DC}$	
Switching voltage:	$250 \mathrm{VaC} / 24 \mathrm{VDC}$	
Max. power dissipation:	2.4 w	
Output indication:	multifunction red LED	
Mechanical life:	10.000 .000 operations	
Electrical life (AC1):	50.000 operations	
Control		
Control pins:	5-2,6-2,7-2	
Impulse length:	min. $25 \mathrm{~ms} / \mathrm{max}$. unlimited	
Reset time:	max. 150 ms	
Other information		
Operating temperature:	$-20^{\circ} \mathrm{C} \mathrm{to}+55^{\circ} \mathrm{C}\left(-4 \mathrm{P}^{\circ} \mathrm{Fto} 131{ }^{\circ} \mathrm{F}\right)$	
Storage temperature:	$-30^{\circ} \mathrm{Cto}+70^{\circ} \mathrm{C}\left(-22^{\circ} \mathrm{F}\right.$ to $\left.158{ }^{\circ} \mathrm{F}\right)$	
Dielectrical strength:	2.5 kV AC	
supply - output $1(1,3,4)$		Vac
supply - output $2(8,9,11)$	2.5 kV AC	
output 1 - output 2	2.5 kV AC	
Operating position:	any	
Mounting:	11 pin octal socket	
Protection degree:	IP40 from front panel	
Overvoltage category:		
for supply voltage	III.	
for supply voltage		
150-240V AC/DC	1.	
Pollution degree:	2	
Dimensions:		
Weight:		108 g (3.81 oz.)
Standards:	EN 61812-1	

Description

Connection
Indication of operating states

$-\frac{\text { Reset }}{-\frac{\text { Start }}{}}$

Mode selection
FUNC. Settings function mode
The desired function a is set
The desired function a-j is set with the FUNC rotary switch.
OFF. Output contact open mode

Function
For a description of the functions on page 23.
The second output contact switches according to the supply voltage.
The first output contact switches according to the function (a-j) set by the trimmer FUNC.

- Digital multifunction relay can be used for controlling lights, heating, motors, pumps, machines and appliances where you need set time functions. - Thanks to digital display.
out any mechanical tolerar settings you exact set reguired time (withTime range 0.1 s - 999 hours.
Universal power supply $24-240 \mathrm{VAC} / \mathrm{DC}$ brings you variability of powering. - Visible time function for non-autoratized.

Technical parameters	CRM-100
Number of functions:	17
Supply terminals:	A1 - A2
Voltage range:	AC/DC 24-240V ($50 / 60 \mathrm{~Hz}$)
Consumption (apparent/loss):	AC max. 1-4 VA/DC max. 1-3 W
Max. dissipated power	
(Un+terminals:	4w
Supply voltage tolerance:	-15%; 10%
Time ranges:	0.15 - 999 hrs.
Time setting:	Buttons SET/ADJ
Repeat accuracy:	$\pm 0.5 \%$ - of selected range
Variation in timing due to voltage change:	$\pm 2 \%$
Variation in timing due to temperature change:	$\pm 5 \%$
Output	
Number of contacts:	1xC/O/SPDT (AgNi)
Current rating:	$8 \mathrm{~A} / \mathrm{AC1}$
Breaking capacity:	2000 VA/AC1, 192 W/DC
Inrush current:	$10 \mathrm{~A} / 3 \mathrm{~s}$
Switching voltage:	250 V AC/24V DC
Output indication:	multifunction red LED
Mechanical life:	20.000 .000 operations
Electrical life (AC1):	100.000 operations
Controlling	
Control terminals:	A1-B1
Other information	
Operating temperature:	-10 to $+55^{\circ} \mathrm{C}\left(14\right.$ to $\left.131{ }^{\circ} \mathrm{F}\right)$
Storage temperature:	-30 to $+70^{\circ} \mathrm{C}\left(-22\right.$ to $\left.158{ }^{\circ} \mathrm{F}\right)$

Description

Description of displayed elements on the screen

Function	里: 5
Pene	

Runtime
Preset time
(pu).
operating position: noung. Protection degree:
Overvoltage cathegor Overvoltage cathegory:
Pollution degree: Pollution degree:
Max. cable size (m

Dimensions:

Weight:

Symbol

$$
2.5 \mathrm{kV}
$$

DIN rail en 60715 IP30 from front pane//IP20 terminals III.
2
2 solid wire max. 1×2.5 or $2 \times 1.5 /$ with sleeve max. 1×2.5 (AWG 12) $85 \times 18.2 \times 76 \mathrm{~mm}\left(3.3^{\circ} \times 0.7^{7} \times 2.99^{\prime \prime}\right)$ EN 6182 2-1
EN61812-1

Function

Up/Down (V/A) blinks during
the Timer Duration

Connection

0

ON delay [0]
ON delay $[0]$
Timing commences when supply is present. Ren-
ergizes at the end of the timing period.

Cyclic OFF/ON \{OFF Start, Sym, Asym) [] T-ON and T-OFF can be same or different. The
relay (R) keeps on changing its status till power relay (R) keeps on changing its status till power
is removed.

Impulse ON/OFF [$[$] $]$ Permanent supply is required. R energizes for
the timing period when BI is opened or closed. When timing commencess changing state of $B 1$
does not affect B but resest timer.

Signal OFF/ON $[8]$ When switch $B 1$ is closed or opened for preset time, T, the relay changes its state after time du
ration T.

Cyclic ON/OFF \{On Start,(Sym,Asym)\} [2]
 but intitially the relay(R) is
tert he power is spplied

Impulse ON energizing [3] Impulse ON energizing []]
After power oN, Renergizes and timing starts. R
de-energizes after timing is over.

Accumulative delay ON signal [4] Time commences as supply ys is resent and switch
B1 is open. Closing switch $B 1$ pauses t timing. TimBI is open. Closing switch B1 pauses timing. Tim-
ing resumes when swith
energizes at the ind on of t iming opened again.

Accumulative delay $\mathbf{O N}$ inverted signal $[5]$ Time commences as supply is presentand switch
B1 is closed. Opening switch B1 pauses timing. Timing resumes when switch $B 1$ is closed again.
Renergizes at end of t timing.

Accumulative impulse on signal $[6]$ When supply is ON, Renergizes. When switch B1
is closed timing is is closed timing is suspended and remains sus-
pended till switch $B 1$ is opened again. Interuptpended till switch Bl is
ing supply \mathbf{y} esets timer .

Signal ON delay []
Permanent supply required. Timing starts when
switch B1 is closed. R enerogizes at end of timing switch $B 1$ is closed. R energizes at end of timing
period and de-energizes when $B 1$ is opened.
T verted signa on dela
Inverted signal ON delay $[8]$
Timing will commence when supply is present and switch B1 is open. Reneraiges after timing.
IfBl is closed during timing period, timing resets to the beginning of cycle.

Signal OFF delay $[]$
Permanent suply
is
Permanent supply ys reauired. R energizes when
switch $B 1$ is closed. Timing commences after S is switch BI is closed. Timing commences ate
opened and then the relay de-energizes.

Connection

- Multifunction programmable digital relay with 4 digit red LED display Control and setting are done by 3 buttons, user-friendly menu, absolute accuracy in timer setting, time countdown on a display, galvanically
separated START and STOP control inputs with UNI supply.
- Thanks to its complexity, it is possible to program also more demanding time functions by using 2 independent times.
- 2 independent times, with combination of 2 inputs and 2 outputs. PDR-2/A: 16 functions, choice of functions of the other relay, 30 memory places for most frequently used times.
PDR-2/B: 10 functions, 1 output of 10 functions can be assigned to each relay $=2$ relays in one device.
- 2 independent times in range: $0.01 \mathrm{~s}-100 \mathrm{hrs}$.

Description

Supply terminals (A1-A2)		Control inputs $($ IN1-IN2)				
Indication of operating times ($\mathrm{t} 1, \mathrm{t} 2$)	(1)	Indication of time$(\mathrm{h}, \mathrm{m}, \mathrm{s})$				
	PDR-2					
Controlling buttons		Indication of output status				
Output 1 (16-15-18)	16 \| 15	18	28	25	26	$\begin{gathered} \text { Output } \\ (28-25-28) \end{gathered}$
	QQQQQ					

Symbol

Time data
Time range:
Time range:
Minimal time step:
Time deviation:
Setting error:
Setting, reset accuracy:
Digital places:
$0.01 \mathrm{~s}-99 \mathrm{~h} 59 \mathrm{~min} 59 \mathrm{sec} 99 \mathrm{ss}$
0.01 s
0.01% of set value
100\%
selected via program

Technical parameters	CRM-46
Number of functions:	6
Supply terminals:	A1-A2
Supply voltage:	AC 230 V ($50 / 60 \mathrm{~Hz}$)
Consumption max:	3 VA 1.6 W
Max. dissipated power	
(Un+terminals):	4w
Supply voltage tolerance:	$-15 \% ;+10 \%$
Supply indication:	green LED
Time ranges:	0.5-10 min
Time setting:	potentiometer
Time deviation:	5% - mechanical setting
Repeat accuracy:	5% - set value stability
Temperature coefficient:	$0.01 \% /{ }^{\circ} \mathrm{C}, \mathrm{at}=20^{\circ} \mathrm{C}\left(0.01 \% / \% \mathrm{~F}, \mathrm{at}=68{ }^{\circ} \mathrm{F}\right)$
Output	
Number of contacts:	$1 \times \mathrm{NO}-\mathrm{SPST}\left(\mathrm{AgSnO}_{2}\right.$), switches potencial A1
Current rating:	$16 \mathrm{~A} / \mathrm{AC1}$
Breaking capacity:	$4000 \mathrm{VA} / \mathrm{AC1}, 384 \mathrm{~W} / \mathrm{DC}$
Inrush current:	$30 \mathrm{~A} / 3 \mathrm{3s}$
Switching voltage:	$250 \mathrm{VAC} / 24 \mathrm{VDC}$
Output indication:	red LED
Mechanical life:	10.000 .000 operations
Electrical life (AC1):*	50.000 operations
Control	
Control voltage:	AC 230 V
Power the control input max.:	$4.5 \mathrm{VA} / 0.3 \mathrm{~W}$
Glow tubes connetions:	Yes
Max. Current of connected glow lamps:	100 mA
Control. terminals:	A1-S or A2-S
Impulse length:	min. $40 \mathrm{~ms} / \mathrm{max}$. unlimited
Reset time:	max. 320 ms
Other information	
Operating temperature:	$-20^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}\left(-4{ }^{\circ} \mathrm{Fto} 131{ }^{\circ} \mathrm{F}\right)$
Storage temperature:	$-30^{\circ} \mathrm{Cto}+70^{\circ} \mathrm{C}\left(-22^{\circ} \mathrm{F}\right.$ to $\left.158{ }^{\circ} \mathrm{F}\right)$

Storage temperature:
perating position: Mounting:
Protection degree:
Overvoltage cathegory Porlutiondegree: Max.cabesize
Dimensions:
Dimensí
*For higher loads and frequent switching, it is recommended to strengthen the relay contact with a power contactor, e.g. the VSxxx contactor.

IP40 from front panel/IP10 terminal

$$
\text { with sleeve max. } 1 \times 2.5 \text { or } 2 \times 1.5 \text {, (AWG } 12 \text {) }
$$

$$
90 \times 17.6 \times 64 \mathrm{~mm}\left(3.5^{\prime \prime} \times 0.7^{\prime \prime} \times 2.5^{\prime}\right)
$$

$$
56 \mathrm{~g}(2 \mathrm{oz})
$$

Standard:
Standards:
$\stackrel{\text { any }}{ }$
DIN rail EN 60715 III.
2
2
solid wire max. 2×2.5 or 1×4

569 (2 O2,

Staircase switch enables delayed switching off of lighting on stairs, corridors, entrances, common areas or for delayed running of fans in The intelligent stairca
the CRM-4, while it is p switch offers similar application possibilities as peatedly by briefly is possible to extend the delay for functions a, b repeatedly by briefly pressing the control button (s). Each short press mul-
tiplies the time set by the potentiometer i.e. setting the potentiometer tiplies the time set by the potentiometer, i.e. setting the potentiometer
to 2 minutes with three presses extends the delay up to 6 minutes. The maximum value of such an extended delay will always be 30 minutes, regardless of the number of presses.

- Long press ($>2 \mathrm{~s}$) can switch off the output prematurely and end the ongoing delay.
Control input with the possibility of loading up to 100 mA load (glim lamp, LED in the button, etc.).
- Function (selectable by potentiometer on the front panel)
a - STAIRCASE SWITCH, programmable with signalization
b- STAIRCASE SWITCH, programmable without signalization
c- MEMORY LATCH (press to switch on, press to switch off)
d - MEMORY LATCH with delay
ON (permanently closed) - e.g. during cleaning, moving
OFF (permanently open) - e.g, when replacing luminaires.
Adjustable time range 0.5 to
- 3 -wire or 4 -wire connection finputs
.

Description

Circuit connection

3 -wire connection
4-wire connection

Function

When switching between functions, the red LED flashes.

STAIRCASE SWITCH, programmable with signalization
The device timed the set time, 30 and 40 s before the end of the time by You can increase the time interval by briefly pressing the button repeated Suitable for resistive loads (e.g. bulbs).

MEMORY LATCH (press to switch on, press to switch off)
By pressing the button the output relay closes and by pressing again By pressing the
the relay opens.
This function is primarily intended for locations where long-term light ing (without timing) is desirable and the unit is controlled from multipl locations (e.g. in office buildings).
b

STAIRCASE SWITCH, programmable without signalization
The device will timed the set time without flashing at the end of the ncrase the time interval by briefly pressing the butThe function is suitable for loads that can withstand frequent switching on and off (eg energy saving lamps, LED bulbs).

d | | \square | \square | \square |
| :---: | :--- | :--- | :--- |
| | \square | \square | |

MEMORY LATCH with delay
Pressing the button switches the output on/off. If the output is not turned off during the set time " t ", it turns off automatically after the time. This function is suitable for places where lighting is often forgotten e.g. toilets, corridors, cellars).

Simple staircase switch used to control lighting in corridors, halls, staircases, common areas.
Can also be used for delayed fan run-out e.g. in bathrooms, toilets,. 3 function

- ON (permanently closed) - e.g. when cleaning, moving

AUTO - STAIRCASE SWITCH without signalization
OFF (permanently open) - e.g. when replacing lights.
Adjustable time range 0.5 to 10 minutes
pressing the control button (>25).
Possisles surge .
currents up to 80 A .
A1 or A2).

Description

Circuit connection

Function
When switching between functions, the red LED flashes.
\square
AUTO - STAIRCASE SWITCH without signalization
By briefly pressing the control button, the device timed the set time. You can
not extend the time interval by briefly pressing the button repeatedly not extend the time interval by briefly pressing the button repeatedly. Function suitable for resistive loads (e.g. bulbs) and loads that do not tolerate
Notice:
After the supply voltage has been connected, the device always performs
1 time cycle 1 time cycle
The control input reacts to the potential of terminals A1 and A2.

- Multifunction relay designed for installation into a wiring box or under
wall-switch in an existing electrical installation wall-switch in an existing electrical installation.
for a switch contr ast solution for exchanging standard wall-switch a button a button
- SMR-K
-wire connection, works without the connection of a neutral conductor power output: 10-160 VA
for flawless function of the product is necessary the presence of a load R, , or C between input S and neutral wire.
-SMR-T
Wrks without the connection of a neutral conductor power output: $10-160$ VA
between input S and neutral wire is possible connect any load R, L, or C - that is not necessary (unlike SMR-K).
$\stackrel{\text { SMR-H }}{-4 \text {-wire }}$
- power output: $0-200 \mathrm{VA}$.
- SMR-B
- 4 -wire connection
- output contact 1x
output contact $1 \times 16 \mathrm{~A} / 4000 \mathrm{VA}, 250 \mathrm{~V} \mathrm{AC1}$
enables switching of fluorescent lights and also energy saving lights independent galvanically separated input AC/DC $5-250 \mathrm{~V}$, for example
for control from a security system. for control from a security system.

Description

SMR-H

SMR-B

Galvanicalls separated control
input $5-250 \mathrm{VACIDC}$

Note: SMR-K, SMR-T, SMR-H are not intended for switching capacity load (energy saving bubss and LED lights with capacity power etc.), these products are only intended for switching resistive and inductive loads (incandescent bulbs, fans, etc.). SMR-B with relay output is intended to other types of load. Using this output it is possible to switch the load of R , L or C -values listed in the load table. Between inputs S and neutral wire is possible to connect any load of R or C, however this is not (unlike the SMR-K) condition.

Example of connection SMR-T

With astronomical program

With NFC communication

Technical parameters	SHT-1, SHT-3	SHT-1/2, SHT-3/2
Supply terminals:	A1-A2	
Voltage range:	AC/DC $12-240 \mathrm{~V}$ ($\mathrm{AC} 50 / 60 \mathrm{~Hz}$)	
Burden (max):	AC $0.5-2 \mathrm{VA} / \mathrm{DC} 0.4-2 \mathrm{~W}$	
Voltage range:	AC 230 V ($50 / 60 \mathrm{~Hz}$)	
Burden:	AC max. $14 \mathrm{VA} / 2 \mathrm{~W}$	
Max. dissipated power		
(Un+terminals):	3.5 W	5 W
Supply voltage tolerance:	$-15 \% ;+10 \%$	
Back-up supply:	yes	
Summer/winter time:	automatic	
Output		
Number of contacts:	$1 \times$ changeoversPDT (AgSSO) ${ }_{2}$ 2 $2 \times$ changeover/SPDT(AgSno $_{2}$)	
Current rating:	$16 \mathrm{~A} / \mathrm{AC1}$	
Breaking capacity:	4000 VA/AC1, $384 \mathrm{~W} / \mathrm{DC}$	
Inrush current:	$30 \mathrm{~A}<3 \mathrm{~s}$	
Switching voltage:	$250 \mathrm{VAC} / 24 \mathrm{VDC}$	
Mechanical life:	> 30.000.000 operations	
Electrical life (AC1):	> 70.000 operations	
Time circuit		
Power back-up:	up to 3 years	
Accuracy:	max. $\pm 15 /$ day at $23^{\circ} \mathrm{C}\left(73.4{ }^{\circ} \mathrm{F}\right)$	
Minimum interval:	1 min	
Data stored for:	min. 10 years	
Cyclic output:	1-99 5	
Pulse output:	1-995	
Program circuit		
Number of memory places:	100	
Program (SHT-1; SHT-1/2):	daily, weekly	
Program (SHT-3; $\mathrm{SHT}-3 / 2$):	daily, weekly, monthly, yearly (up to year 2095)	
Data readout:	LCD display, with back light	
Other information		
Operating temperature:	$-20^{\circ} \mathrm{Cto}+55^{\circ} \mathrm{C}\left(-4.4 \mathrm{Ftol} 131{ }^{\circ} \mathrm{F}\right)$	
Storage temperature:	$-30^{\circ} \mathrm{Cto}+70^{\circ} \mathrm{C}\left(-22^{\circ} \mathrm{F}\right.$ to $\left.158{ }^{\circ} \mathrm{F}\right)$	
Dielectric strength:	4 kV (supply - output)	
Operating position:	any	
Mounting:	din rail EN 60775	
Protection degree:	\|P10 clips, IP40 from front panel	
Overvoltage category:	III.	
Polution degree:	2	
Max. cable size (mm):	solid wire max. 2×2.5 or 1×4 with sleeve max. 1×2.5 or 2×1.5 (AWG 12)	
Dimensions:	$90 \times 35 \times 64 \mathrm{~mm}\left(3.5^{\prime \prime} \times 1.4^{\prime \prime} \times 2.5^{\prime \prime}\right)$	
Weight:	(UNI) - $117 \mathrm{~g}(4.13 \mathrm{oz}$.$) ,$ (230) - $115 \mathrm{~g}(4.06 \mathrm{oz}$.	(UNI) - $132 \mathrm{~g}(4.7 \mathrm{oz}$. (230) - $128 \mathrm{~g}(4.5 \mathrm{oz}$.
Standards:	EN61812-1	

- This time switch clock SHT is used to control various appliances in real
time; daily, weekly, monthly and yearly mode. time; daily, weekly, monthly and yearly mode.
ally to next program change/random (CUBE) "."Holiday program" option to choose an interval when the device doesn't switch according to the standard program, but will be block during that time.
Automatic conversion summer/winter time.
- Sealable cover of front panel, easy controlling via 4 buttons. Cyclic output.
- Pulse output.

Description
Supply teminals (A1)

Description of displayed elements on the screen

Connection

de

Technical parameters	SHT-4	SHT-6	SHT-7
Power supply terminals:	A1-A2		
Supply voltage:	AC 230 V ($50 / 60 \mathrm{~Hz}$)		
Input power:	AC max. 14VA/2W	$8 \mathrm{VA} / 0.7 \mathrm{~W}$	AC max. 14VA/2W
Max. dissipated power			
(Un+terminals):	5 W	3.5 W	5 W
Supply voltage tolerance:	$-15 \% ;+10 \%$		
Real time back-up:	yes		
Backup battery type	CR 2032 (3V)		
Transition to summer/wintertime:	automatic		

Output
Number of contacts:
Rated current:

Switching power:
Peak current:
Mechanical service life
Eechanical service life: Timing circuit
Real time backup:
Real time backup:
Accuracy of operation:*
Minimum triggering interval:
Program data storage period:
Program data storage period:

Number of memory locations.
Program:

Program:	daily, yearly		
NFC interface:	x	\times	daily, yearly
Data display:	LCD display, backlight		

Other information

Operating temperature:	-20 to $+55^{\circ} \mathrm{C}\left(-4{ }^{\circ} \mathrm{F}\right.$ to $\left.131^{\circ} \mathrm{F}\right)$
Storage temperature:	-30 to $+70^{\circ}\left(-22^{\circ}\right.$ to $\left.158^{\circ} \mathrm{F}\right)$
Dielectric strength:	4 KV (power supply - output)
Operatig position:	any
Mounting:	DIN rail EN 60715

Protection degree: Overvoltage category
Polution degree:
Max. cable size (mm):
Dimensions:
Weight (without battery:
Standards:
ut battery:
$90 \times 35 \times 64 \mathrm{~mm}\left(3.55^{5} \times 1.4^{1.5} \times 25^{\circ}\right)$

* SHT-6: without DCF

Symbol

$\underset{\substack{\text { SHT-4 } \\ \text { SHT-7 }}}{ }$

SHT-4: Used to control different loads according to sunrise and sunset
time based on geoogra hical coordinates time based on geographical coordinates:
preset coordinates for European cities incl. manual setting options hour meter for each channel
HT-6: Used to cont - each channel is adjustable individually. is synchronized tro various appliances depending on real time, which is synchronize
the set time.
-single channel design

- hour meter.

SHT-7: Used to control various appliances depending on real time, incl. settings via smartphone thanks to NFC Cransmission support

- two-channel design - each channel is adjustable individually
- easy transfer of settings to multiple devices conveniently in the application and, conversely, simple transfer of settings from the timer to the application in the telephone.
Sealable transparent front panel cover, easy to operate with 4 buttons. Real-time backup - up to 3 years with replaceable battery.
weekly, monthly and yearly regimen
Automatic winter/summer time changeover.

Supply voltage terminal (A2) output - Channel 2 (26-25

Wiring
$\underset{\substack{\text { SHT-4. } \\ \text { shr-7 }}}{\text {. }}$

Universal DCF modure which is designed for controlling the SHT -6 time and other devices.
Outdoor applications (IP65 protection).
Two-wire connection - not polarity sensitive! Length of connecting cable is up to $100 \mathrm{~m}(328)$
Visual indication of proper function module.

Technical parameters	DCFR-1
Connection:	2 conductors
Max. cross-connection conductors:	$2.5 \mathrm{~mm}^{2}$
Max voltage on the wires:	10 V
Indication Function:	red LED
Other information	
Storage temperature:	-30 to $+70^{\circ} \mathrm{C}\left(-22\right.$ to $\left.158{ }^{\circ} \mathrm{F}\right)$
Protection:	1P65
Dimensions:	$98 \times 62 \times 34 \mathrm{~mm}\left(39.3^{\prime \prime} \times 2.44^{\prime \prime} \times 1.3^{\prime \prime}\right)$
Weight:	$110 \mathrm{~g}(3.88$ oz.)
Operating position:	perpendicular to the direction of reception
The reception area:	about 1500 km from Frankfurt/Main

Description

Working position - options

Mechanical timer is a simple and inexpensive alternative to digital switches for controlling real-time heating, ventilation, cooling, lighting or - daily program.

- Selection of operating modes using a switch on the panel: © switches automatically according to the set program

$$
\begin{aligned}
& \text { © switches automatical } \\
& \text { I closes permanently. }
\end{aligned}
$$

- Power backup after power failure 100 hours, when fully charged. - Sealable transparent front panel cover.

Description

00000

Technical parameters	AST-2D	AST-2DR	AST-2WR
Supply			
Supply terminals:	4,5		
Supply voltage:	AC 230V ($50 / 60 \mathrm{~Hz}$)		
Power consumption (max):	1W(1.5VA)		
Supply voltage tolerance:	-10\%, 110%		
Time circuit			
Program:	daily	daily	weekly
Number of switching segments:	48		
Minimum switching interval:	30 min	30 min	3.5 hrs
Operating accuracy:	$\pm 15 /$ day		
Power reserve:	max. 150 hrs		
Output			
Number of contacts:	1x changeover (AgNi)		
Rated current:	16A/AC1		
Breaking capacity:	$3500 \mathrm{VA} / \mathrm{AC1}$		
Switching voltage:	250 VAC		
Mechanical life:	1.000 .000 operations		
Electrical life (AC1):	50.000 operations		
Other information			
Operating temperature:	-10 to $50^{\circ} \mathrm{C}$ (14to $\left.122^{\circ} \mathrm{F}\right)$		
Storage temperature:	-10 to $50^{\circ} \mathrm{C}$ (14to $\left.122^{\circ} \mathrm{F}\right)$		
Dielectric strength:	4 kV (supply - output)		
Operating position:	any		
Mounting:	din rail En 60715		
Protection degree:	$1{ }^{1} 20$		
Overvoltage category:	11.		
Pollution degre:	2		
Max. cable size (mm):	with sleev	max. 1×4, max. 2×1.5 /	/ 5 (AWG 12)
Dimensions:	$90 \times 35 \times 60 \mathrm{~mm}\left(3.55^{2} \times 1.4 \times 2.44^{4}\right)$		
Weight:	$117 \mathrm{~g}(4.10 \mathrm{oz}$)		
Standards:	EN 61812-1,EN 60669-1, EN 63044-1		

he mechanical time switch is a simple and inexpensive alternativ odigital time switches for controlling heating, ventilation, cooling lighting systems or pumps depending on real time. Daily or weekly program
Selection of operating modes using the switch on the panel:
(1) switches automatically according to the set program

I permanently closes
O permanently opens
Power reserve after power off for up to 150 hours after fully charged. Sealable transparent front panel cover.

Description

Connection

(1)

50

AUXILIARY RELAYS

vs

- Power relay used for switching larger load output, strengthen or R 1 VS316 24 , V5316 6230 existing device
In the design 1-MODULE, DIN rail mounting to a 3 -phase circuit. high intensity LED with choice of LED color (red, grees status indicated by VS116B/230 MINI, mounting in installation boe gre blue orwhite LED*). , switching of lights, motors for blinds or awnings.
ws of output indicated by LED on front panel of device.

Technical parameters	VS116B/230	VS116K	VS116U	VS308K	VS308U	VS316/24	VS316/230
Supply terminals:	L-N	A1-A2					
Voltage range:	AC 230 V ($50 / 60 \mathrm{~Hz}$)	$\begin{gathered} \text { AC } 5030 \mathrm{~V}, \mathrm{H}_{2} \end{gathered}$	$\begin{gathered} \text { AC/DC 12-240 V } \\ (50 / 60 \mathrm{~Hz}) \end{gathered}$	AC 230 V (50/60 Hz)	$\begin{gathered} \text { AC/DC 12-240 V } \\ (50 / 60 \mathrm{~Hz}) \end{gathered}$	AC/DC 24 V ($50 / 60 \mathrm{~Hz}$)	$\begin{gathered} \mathrm{AC} 230 \mathrm{~V} \\ (50 / 60 \mathrm{~Hz}) \end{gathered}$
Burden (max):	$\begin{gathered} \mathrm{AC} 7.5 \mathrm{VA} \\ 1 \mathrm{w} \end{gathered}$	$\begin{gathered} \mathrm{AC} 7.5 \mathrm{VA} \\ 1 \mathrm{w} \end{gathered}$	$\begin{gathered} \text { AC } 0.7-3 \mathrm{~V} \mathrm{~V} / \mathrm{DC} \\ 0.5-1.7 \mathrm{~W} \\ \hline \end{gathered}$	$\begin{gathered} \text { AC } 10.3 \text { VA } \\ 1.1 \mathrm{c} \end{gathered}$	$\begin{gathered} \text { AC } 0.7-3 \mathrm{VA} / \mathrm{DC} \\ 0.5-1.7 \mathrm{~W} \end{gathered}$	$\begin{gathered} 1.6 \mathrm{VA} \\ 1.2 \mathrm{~W} \end{gathered}$	2.5 VA
Supply terminals:	x	A1-A3	x	A1-A3	x		
Voltage range:	\times	AC/DC 24 V ($50 / 60 \mathrm{~Hz}$)	\times	AC/DC 24 V ($50 / 60 \mathrm{~Hz}$)	x		
Burden:	\times	aC $1 \mathrm{Va/DC}$ iw	\times	ac iva/dc im	\times		
Supply voltage tolerance:	$-15 \% ;+10 \%$						
Max. dissipated power (Un + terminals):	4 w			3 w		8 w	6 w
Output							
Number of contacts:	$1 \times$ changeover/SPDT (AgSnO ${ }_{2}$)			$3 \times$ changeover/TPDT (AgNi/Silver Alloy)		$3 \times$ changeover/TPDT (AgSnO $_{2}$)	
Currentrating:	$16 \mathrm{~A} / \mathrm{AC1}$			8A/AC1		16A/AC1	
Breaking capacity:	4000va/AC1, 384W/DC			2000VA/AC1, 192W/DC		4000VA/AC1, 384W/DC	
Inrush current:	$30 \mathrm{~A} / 3 \mathrm{~s}$			$10 \mathrm{~A}<3 \mathrm{~s}$		$30 \mathrm{~A}<3 \mathrm{~s}$	
Switching voltage:	$250 \mathrm{VaC} / 24 \mathrm{VCC}$						
Output indication:	red LED	high intensity of LED					
Mechanical life:	30.000 .000 operations					10.000.000 operations	
Electrical life (AC1):	70.000 operations					100.000 operations	
Time between switching:	min. 25					20 ms	50 ms
Other information							
Operating temperature:	-20 to $+55^{\circ} \mathrm{C}\left(-4^{\circ} \mathrm{Fto} 131{ }^{\circ} \mathrm{F}\right)$						
Storage temperature:	-30 to $+70^{\circ} \mathrm{C}\left(-22^{\circ} \mathrm{Fto} 158^{\circ} \mathrm{F}\right)$						
Dielectrical strength:	4 kV (supply-output)						
Operating position:	any						
Mounting:	$\begin{aligned} & \text { free at connecting } \\ & \text { wire } \end{aligned}$	DIN rail EN 60715					
Protection degree:	1 P30	IP40 from front panel/IP20 terminals					
Overvoltage category:	III.						
Pollution degree:	20.2020						
Max. cable size ($\mathrm{mm}{ }^{2}$):	$2 \times 0.75 \mathrm{~mm}^{2}$ (AWG 18), $3 \times 2.5 \mathrm{~mm}^{2}$ (AWG 10)	max. 1×2.5 or 2×1.5 max. 1×2.5 (AWG 12)					
Dimensions:	($\begin{gathered}49 \times 49 \times 21 \mathrm{~mm} \\ \left(22^{2} \times 2 \times 0.87\right.\end{gathered}$	$90 \times 17.6 \times 64 \mathrm{~mm}\left(3.55^{\prime \prime} \times 0.7^{\prime \prime} \times 2.5{ }^{5}\right)$					
Weight:	48 g (1.7 oz.)	56 g (20z.)	59 g (2.1 oz.)	78 g (2.75 oz.)	$80 \mathrm{~g}(2.80$ z.)	$90 \mathrm{~g}(3.17 \mathrm{oz}$.	93 g (3.3 oz.)
Standards:	EN 60669-1, EN 60669-2-1						

Description
vs116k, vs116u

vS316/24, VS316/230

vs1168/230	859518814745				
VS116K/red	8595188122597	V5308K/red	8595188122696	VS316/24 red	8595188135771
VS116K/green	8595188122610	V5308K/green	8595188122719	VS316/24 green	8595188136105
VS116K/white	8595188122573	V5308K/white	8595188122672	VS316/24 white	8595188136099
VS116K/blue	8595188122603	V5308K/blue	8595188122702	vs316/24 blue	8595188136112
VS116U/red	8595188124607	VS308U/red	8595188130103	VS316/230 red	8595188135559
VS116U/green	8595188136433	V5308U/green	8595188136440	V5316/230 green	8595188136075
VS116U/white	8595188138482	V5308U/white	8595188138512	VS316/230 white	8595188136051
vS116U/blue	8595188138475	vS308U/blue	8595188138505	vS316/230 blue	8595188136068

Order code

VS316/230	
VS3 green	8595188135559
VS316/230	8595136075

	VS116K/red: 2295	VS116U/red: 2460	VS308K/red: 2269	VS308U/red: 3010	VS316/24V red: 3577	vs316/230v red: 4471
	Vs116K/green: 2261	VS116U/green: 3643	V5308K/green: 2271	VS308U/green: 3644	V5316/24V green: 3610	VS316/230V green: 4472
1	vs116K/white: 2257	vS116U/white: 3848	VS308K/white: 2267	VS308U/white: 3851	vs316/24V white: 3609	VS316/230V white: 4470
	$\begin{aligned} & \text { VS116K/blue: } \\ & 2260 \end{aligned}$	VS116U/blue: 3847	VS308K/blue: 2270	VS308U/blue: 3850	VS316/24V blue: 3611	VS316/230vblue: 4474

Notes

Max. time of changeover of contact is 10 ms .
VS316/24 or VS316/230 enables switching of different phases or 3-phase voltage.

* possibility to choose blue and white color of LED for power relays line VS in case of minimal order quantity 100 pcs.

VS308K

VS308U, VS316/24, VS316/230

Installation contactors VS

VS120, VS220, VS420, VS425, VS440, VS463 | Installation contactors

EAN code			- For switching electric circuits, especially for resistave loads and 3-phase induction motors: number of contacts VS120: 1 number of contacts VS220: 2 number of contacts VS420, VS425, VS440, VS463: 4. - It is produced in configuration of switching and breaking contacts: VS120: 10, 01 VS220: 20, 11, 02 VS420: 40, 31 VS425: 40, 31, 22, 1304 VS440: 40, 31, 22, 04 VS463: 40, 31, 22. - Protection IP20 - on request we deliver covers that ensure protection IP40 for all terminals. - DIN rail or panel mounting.							
Technical parameters	VS120	VS220	VS420	VS425	VS440	VS463				
Rated insulation voltage (U):	230 V	230 V	415 V	440 V	440 V	440 V				
Rated thermo-current t_{1+1} (in AC):	20 A	20 A	20 A	25 A	40 A	63 A				
Voltage range:	$50 / 60 \mathrm{~Hz}$									
Switched operation										
AC-1 for $400 \mathrm{~V}, 3$ phase:	x	x	13 kW	16 kW	26 kW	40 kW				
AC-1 for 230 V :	$4 \mathrm{~kW}, 1$ phase	$4 \mathrm{~kW}, 1$ phase	$7.5 \mathrm{~kW}, 3$ phase	$9 \mathrm{~kW}, 3$ phase	$16 \mathrm{~kW}, 3$ phase	$24 \mathrm{~kW}, 3$ phase				
AC-3 for $400 \mathrm{~V}, 3$ phase:	x	\times	2.2 kW	4 kW	11 kW	15 kW				
AC-3 for 230 V :	$\begin{gathered} 1.3 \mathrm{~kW} \text { only NO, } \\ 1 \text { phase } \end{gathered}$	1.3 kW only No, 1 phase	$\begin{aligned} & 1.1 \mathrm{~kW} \text {, } \\ & 3 \text { phase } \end{aligned}$	$\begin{aligned} & 2.2 \mathrm{~kW} \text {, } \\ & 3 \text { phase } \end{aligned}$	$\begin{aligned} & 5.5 \mathrm{~kW}, \\ & 3 \text { phase } \end{aligned}$	$\begin{aligned} & 8.5 \mathrm{~kW}, \\ & 3 \text { phase } \end{aligned}$				
AC-7a for $400 \mathrm{~V}, 3$ phase:	x	x	13 kW	16 kW	26 kW	40 kW				
AC-7a for 230 V :	$4 \mathrm{~kW}, 1$ phase	$4 \mathrm{~kW}, 1$ phase	$7.5 \mathrm{~kW}, 3$ phase	$9 \mathrm{kw}, 3$ phase	$16 \mathrm{~kW}, 3$ phase	$24 \mathrm{~kW}, 3$ phase				
AC-7b for $400 \mathrm{~V}, 3$ phase:	\times	\times	2.2 kW	4 kW	11 kW	15 kW				
AC-7b for 230 V :	$\begin{gathered} 1.3 \mathrm{~kW} \text { only NO, } \\ 1 \text { phase } \end{gathered}$	1.3 kW only NO, 1 phase	$\begin{aligned} & 1.1 \mathrm{~kW}, \\ & 3 \text { phase, } \end{aligned}$	$\begin{aligned} & 2.2 \mathrm{~kW}, \\ & 3 \text { phase } \end{aligned}$	$\begin{aligned} & 5.5 \mathrm{~kW}, \\ & 3 \text { phase } \end{aligned}$	$\begin{aligned} & 8.5 \mathrm{~kW}, \\ & 3 \text { phase } \end{aligned}$				
AC-15 for $400 \mathrm{~V}, 1$ phase:	4 A	4 A	4 A	4 A	4 A	4 A				
AC-15 for $230 \mathrm{~V}, 1$ phase:	6 A	6 A	6 A	6 A	6 A	6 A				
DC1 $\mathrm{U}_{\mathrm{e}}=24 \mathrm{~V}$:	20 A	20 A	20 A	25 A	40 A	63 A				
DC1 $\mathrm{U}_{\mathrm{e}}=110 \mathrm{~V}$:	6 A	6 A	2 A	6 A	4 A	4 A				
Loadability of modular contactors see page 54										
The max. number of switching for max. load:	600 switch/hr.	600swith/hr.	600 switch/hr.	600 switch/hr.	600 switch/hr.	600 switch/hr.				
Electrical life in $230 / 400 \mathrm{~V}$										
AC-1-resistive load:	200.000	200.000	200.000	200.000	100.000	100.000				
AC-3-power load:	300.000	300.000	300.000	500.000	500.000	150.000				
A-5a-high-intensity discharge lamp:	$100.000 \mathrm{by} 30 \mathrm{\mu F}$	100.000 by 30 HF	300.000 by 36 uF	100.000 by $36 \mu \mathrm{~F}$	100.000 by 220 uF	100.000 by 330 uF				
AC-5b - incandescent lamps:	100.000 by 2 kw	100.000 by 4 kW	100.000 by 5 kW							
AC-7a - resistive household devices:	200.000	200.000	200.000	200.000	100.000	100.000				
AC-7b - inductive household devices:	300.000	300.000	300.000	300.000	150.000	150.000				
Minimal load:	$\geq 17 \mathrm{~V}, \geq 50 \mathrm{~mA}$	$\geq 24 \mathrm{~V}, \geq 100 \mathrm{~mA}$								
Short circuit protection with the fuse char. aM:	20 A	20 A	20 A	25 A	63 A	80 A				
Coordination Type according EN 60 947-4-1:	2	2	2	2	2	2				
Dielectrical strenght:	4 kV									
Contacts - max. cable size										
Solid conductor:	AWG $7(10 \mathrm{~mm})^{2}$	AWG $7(10 \mathrm{~mm})^{2}$	AWG 10 (2.5mm)	AWG $7(10 \mathrm{~mm})^{2}$	AWG $3(25 \mathrm{~mm})^{2}$	AWG $3(25 \mathrm{~mm})^{2}$				
Stranded conductor:	$6 \mathrm{~mm}{ }^{2}$	$6 \mathrm{~mm}{ }^{2}$	$2.5 \mathrm{~mm}^{2}$	$6 \mathrm{~mm}{ }^{2}$	$16 \mathrm{~mm}{ }^{2}$	$16 \mathrm{~mm}{ }^{2}$				
Maximal torque:	1.2 Nm	1.2 Nm	1.2 Nm	1.2 Nm	3.5 Nm	3.5 Nm				
Coil - max. cable size										
Solid conductor:	AWG $10(2.5 \mathrm{~mm}$)	AWG $10\left(2.5 \mathrm{~mm}^{2}\right)$	AWG $10(2.5 \mathrm{~mm}$)	AWG $10(2.5 \mathrm{~mm}$)	AWG $10\left(2.5 \mathrm{~mm}^{2}\right)$	AWG $10(2.5 \mathrm{~mm}$)				
Stranded conductor:	$2.5 \mathrm{~mm}^{2}$									
Max. torque:	0.6 Nm									
Operating										
Coil control voltage:	$\begin{gathered} \mathrm{AC} / \mathrm{DC} 24 \mathrm{~V}, \\ 230 \mathrm{~V} \end{gathered}$	$\begin{gathered} \mathrm{AC} / \mathrm{DC} 24 \mathrm{~V}, 48 \mathrm{~V}, \\ 110 \mathrm{~V}, 230 \mathrm{~V} \end{gathered}$	AC $12 \mathrm{~V}, 24 \mathrm{~V}$, $48 \mathrm{~V}, 110 \mathrm{~V}, 230 \mathrm{~V}$	$\begin{gathered} \text { AC/DC } 24 \mathrm{~V}, 48 \mathrm{~V}, \\ 110 \mathrm{~V}, 230 \mathrm{~V} \end{gathered}$	AC/DC 24 V , $110 \mathrm{~V}, 230 \mathrm{~V}$	$\begin{gathered} \mathrm{AC} / \mathrm{DC} 24 \mathrm{~V}, 48 \mathrm{~V}, \\ 110 \mathrm{~V}, 230 \mathrm{~V}, \end{gathered}$				
Coil permanent supply $+1-10 \%$:	2.1 VA/2.1 W	2.1 VA/2.1 W	5 VA 1.5 W	2.6VA/2.6 **	$5 \mathrm{VA} / 5 \mathrm{~W}$	$5 \mathrm{VA} / 5 \mathrm{~W}$				
Coil gear supply +- 10% :	2.1 VA/2.1 W	$2.1 \mathrm{VA} / 2.1 \mathrm{~W}$	$30 \mathrm{VA} / 25 \mathrm{~W}$	2.6VA/2.6 **	$5 \mathrm{VA} / 5 \mathrm{~W}$	$5 \mathrm{VA} / 5 \mathrm{~W}$				
Mounting side-by-side:	max. 2 contactors ${ }^{\text {*** }}$	max. 2 contactors**	max. 2 contactors**	max. 2 contactors***	max. 2 contactors**	max. 2 contactors ${ }^{\text {s** }}$				
Operational temperature: Storing temperature:	-5 to $+55^{\circ} \mathrm{C}\left(23\right.$ to $\left.1311^{\circ} \mathrm{F}\right)$									
Weight:	120 g (4.2 oz.)	$130 \mathrm{~g}(4.60$ oz)	170 g (602)	213 g (7. oz.)	400 g (1402.)	400 g (14 Oz)				
Dimensions:	$17.5 \times 85 \times 60 \mathrm{~mm}$ $\left(0.7^{\prime \prime} \times 3.35^{\prime \prime} \times 2.4^{\prime \prime}\right)$	$17.5 \times 85 \times 60 \mathrm{~mm}$ ($0.7^{\prime \prime} \times 3.35^{\prime \prime} \times 2.4^{\prime \prime}$)	$\begin{aligned} & 35 \times 62.5 \times 57 \mathrm{~mm} \\ & \left(1.4^{*} \times 2.7^{7} \times 2.24^{\prime \prime}\right) \end{aligned}$	$\begin{gathered} 35 \times 85 \times 60 \mathrm{~mm} \\ \left(1.4^{\prime \prime} \times 3.35^{\prime \prime} \times 2.4^{\prime \prime}\right) \end{gathered}$	$53.3 \times 84 \times 60 \mathrm{~mm}$ ($2.1^{\prime \prime} \times 3.31^{\prime \prime} \times 2.4^{\prime \prime}$)	$53.3 \times 84 \times 60 \mathrm{~mm}$ ($2.1^{\prime \prime} \times 3.31^{\prime \prime} \times 2.4^{\prime \prime}$)				
Standards:	IEC 60947-4-1, IEC 60947-5-1, IEC 61095, EN 60947-41, EN 60947-5-1, EN 61095, EN 60947-1									

EAN ode see opese 55		
Technical parameters	VSM220	VSM425
Rated insulation voltage (Ui):	230 V	440 V
Rated thermo-current $1_{1 / 1}$ (in AC):	20 A	25 A
Voltage range:	$50 / 60 \mathrm{~Hz}$	$50 / 60 \mathrm{~Hz}$
Switched operation		
AC-1 for 400 V :	\times	$16 \mathrm{~kW}, 3$ phase
AC-1 for 230 V :	$4 \mathrm{~kW}, 1$ phase	$9 \mathrm{~kW}, 3$ phase
AC-3 for 400 V :	\times	$4 \mathrm{~kW}, 3$ phase
AC-3 for 230 V :	1.3 kW only NO , 1 phase	$\begin{aligned} & 2.2 \mathrm{~kW}, \\ & 3 \text { phase } \end{aligned}$
AC-7a for 400 V :	x	$16 \mathrm{~kW}, 3$ phase
AC-7a for 230 V :	$4 \mathrm{~kW}, 1$ phase	$9 \mathrm{~kW}, 3$ phase
AC-7b for 400 V :	x	$4 \mathrm{~kW}, 3$ phase
AC-7b for 230 V :	1.3 kW only NO , 1 phase	$\begin{aligned} & 2.2 \mathrm{~kW}, \\ & 3 \text { phase } \end{aligned}$
AC-15 for 400 V :	4 A	4 A
AC-15 for 230 V :	6 A	6 A
DC1 $\mathrm{U}_{\mathrm{e}}=24 \mathrm{~V}$:	20 A	25 A
DC1 $\mathrm{U}_{\mathrm{e}}=110 \mathrm{~V}$:	6 A	6 A
DC1 $\mathrm{U}_{\mathrm{e}}=220 \mathrm{~V}$:	0.6 A	0.6 A

The max. number of switching for max. load:	600 switch/hr.	600 switch/hr.	VSM425-40
Electrical life in 230/400 V			
AC-1- resistive load:	200.000	200.000	$\begin{array}{llll} \alpha_{13} \alpha_{3} & 3 \alpha_{23} & 5^{\phi_{33}} & 7 \phi_{43} \end{array} 1^{\phi_{A 1}}$
AC-3-power load:	300.000	500.000	
AC-5a-high-intensity discharge lamp:	100.000 by 30 uF	100.000 by 36 uF	
AC-5b- incandescent lamps:	100.000 by 1.5 kW	100.000 by 1.5 kW	
AC-7a - resistive household devices:	200.000	200.000	
AC-7b- inductive household devices:	300.000	500.000	vs425-31
Minimal load:	$\geq 17 \mathrm{~V}, \geq 50 \mathrm{~mA}$	$\geq 17 \mathrm{~V}, \geq 50 \mathrm{~mA}$	
Short circuit protection with the fuse char. am:	20 A	25 A	
Coordination Type according EN 60 947-4-1:	2	,	
Electrical strenght:	4 kV	4 kV	\cdots
Contacts - max. cable size			
Solid conductor:	AWG $7\left(10 \mathrm{~mm}^{2}\right.$)	AWG $7\left(10 \mathrm{~mm}{ }^{2}\right)$	
Stranded conductor:	$6 \mathrm{~mm}^{2}$	$6 \mathrm{~mm}{ }^{2}$	VSM425-22
Maximal torque:	1.2 Nm	1.2 Nm	
Coil - max. cable size			
Solid conductor:	AWG 10 (2.5 mm)	AWG $10(2.5 \mathrm{~mm}$)	
Stranded conductor:	$2.5 \mathrm{~mm}^{2}$	$2.5 \mathrm{~mm}^{2}$	
Max.torque: 0.6 Nm 0.6 Nm Operating			
Coil control voltage:	$\begin{aligned} & \mathrm{AC} 12 \mathrm{~V}, 24 \mathrm{~V}, \\ & 110 \mathrm{~V}, 230 \mathrm{~V} \end{aligned}$	$\begin{gathered} \mathrm{AC} 12 \mathrm{~V}, 24 \mathrm{~V}, \\ 42 \mathrm{~V}, 230 \mathrm{~V} \end{gathered}$	VSM425-04
Coil permanent supply +1-10\%:	$2.8 \mathrm{VA} / 1.2 \mathrm{~W}$	$5.5 \mathrm{VA} / 1.6 \mathrm{~W}$	
Coil gear supply $+1-10 \%$:	$12 \mathrm{VA} / 10 \mathrm{~W}$	$33 \mathrm{VA} / 25 \mathrm{~W}$	
Mounting side-by-side:	max. 2 contactors*	max. 2 contactors*	
Operational temperature:	$\begin{aligned} & -5 \text { to }+55^{\circ} \mathrm{C}\left(23 \text { to } 131^{\circ} \mathrm{F}\right) \\ & -30 \text { to }+80^{\circ} \mathrm{C}\left(-22 \text { to } 176^{\circ} \mathrm{F}\right) \end{aligned}$		
Storing temperature:			
Weight:	$140 \mathrm{~g}(4.9 \mathrm{oz}$)	260 g (9.17 oz.)	
Dimensions:	$17.5 \times 85 \times 60 \mathrm{~mm}$ ($0.7^{\prime \prime} \times 3.35^{\prime \prime} \times 2.4^{\prime \prime}$)	$\begin{aligned} & 35 \times 85 \times 60 \mathrm{~mm} \\ & \left(1.4^{4 \times 3.35} \times 2.4^{4}\right) \end{aligned}$	Auxiliary contacts VSK-11 and VSK-20
Standards:	IEC 60947-4-1, IEC 6 EN 60947-4-1, EN	947-5-1, IEC 61095, 1095, EN 60947-1	Datas of auxiliary contacts for VSK-11 and VSK-20 see page 57.

Special version of instaliation contactors with not only basic functions
but also with manual control but also with manual control.
accumulative appliances for heating and service water
AUTO: common function as with installation contactors without man-
1: shifting from AUTO to 1: operational contacts are closed and back contacts are open until there is another impulse to a contactor coil. regardless voltage.
Optical indicator: ON-OFF
It is produced in configuration of making and breaking contacts: VSM425:40, 31, 22, 04

- It is possible to connect auxiliary contacts VSK to contactors VSM220,
VSM42. VSM425.

Connection VSM220 VSM220 - only AC supply voltage
VSM220-20 VSM220-11

VSM220-02

Connection VSM425 VSM425-only AC supply voltage
SM425-40

25-3

SM425-22

Datas of auxiliary contacts for VSK-11 and VSK-20 see page 57.
*Note: In case several contactors are mounted close to each other, you
vS120
VS120-10 $\underbrace{\phi}_{\varnothing} \square_{\phi A 2}^{\phi}$ A1+
VS 120-01
vs220
VS220-20

vs420

VS420-31

vS425

VS440

vS463

Auxiliary contacts for VS425, VS440, VS463 and VSM220, VSM425

Datas of auxiliary contacts for VSK-11 and VSK-20

Ambient temperature:	$-5^{\circ} \mathrm{Cto}+55^{\circ} \mathrm{C}\left(23^{\circ} \mathrm{Fto} 131{ }^{\circ} \mathrm{F}\right)$
Rated insulation voltage (Vi):	500 V
Dielectrical strength:	4 kV
Rated current 230 V (AC 15):	6 A
Rated current 400 V (AC 15$):$	4 A
Max. switching frequence:	6 A
The max. number of switching for max. load:	600 sep./hod.
Minimal load:	$\geq 12 \mathrm{~V}, \geq 10 \mathrm{~mA}$
Short circuit protection with the fuse char. am:	6 A
Solid/Stranded conductor (max):	$2.5 \mathrm{~mm}^{2} / 2.5 \mathrm{~mm}^{2}$ (AWG 10)
Maximal torque:	0.8 Nm
Weight:	$10 \mathrm{~g}(0.35$ oz.)
Dimensions:	$10 \times 85 \times 60 \mathrm{~mm}\left(0.4^{\prime \prime} \times 3.35^{\prime \prime} \times 2.4\right.$

Connection of auxiliary contact VSK-11 and VSK-20 $\underset{\substack{\text { EAN ode } \\ \text { seepasesp }}}{\substack{\text { and }}}$

VSK-11

Loadability of installation contactors

EAN codes

TYPE OF LIGHT OPERATION (W)			ber of lights on one contactor's contact							
		((A)	vS120	vs220	VS420	vs425	VS440	VS463	VSM220	VSM425
Incandescentlamps	60	0.26	33	33	33	33	65	85	33	33
	100	0.43	20	20	20	20	40	50	20	20
	200	0.87	10	10	10	10	20	25	10	10
	500	2.17	3	3	3	3	8	10	3	3
	1000	4.35	1	1	1	1	4	5	1	1
Flourescent lamps lamps	18	0.37	22	22	22	24	90	140	22	24
	24	0.35	22	22	22	24	90	140	22	24
	36	0.43	17	17	17	20	65	95	17	20
	58	0.67	14	14	14	17	45	70	14	17
Flourescent lamps lead-lag circuit	18	0.11	2×30	2×30	2×30	2x40	2×100	2×150	2×30	2×40
	24	0.14	2×24	2×24	2×24	2x31	2x78	2×118	2×24	2×31
	36	0.22	2×17	2×17	2×17	2×24	2×65	2×95	2×17	2×24
	58	0.35	2×10	2×10	2×10	2×14	2×40	2×60	2×10	2×14
Flourescent lamps parallel correction	18	0.12	7	7	7	8	48	73	7	8
	24	0.15	7	7	7	8	48	73	7	8
	36	0.2	7	7	7	8	48	73	7	8
	58	0.32	4	4	4	5	31	47	4	5
Flourescent lamps with electronic ballast units (EVG)	1×18	0.09	25	25	25	35	100	140	25	35
	1×36	0.16	15	15	15	20	52	75	15	20
	1×58	0.25	14	14	14	19	50	72	14	19
	2×18	0.17	12	12	12	17	50	70	12	17
	2×36	0.32	7	7	7	10	26	38	7	10
	2×58	0.49	7	7	7	9	25	36	7	9
High-pressure mercury-vapourlamps uncorrected lamps uncorrected	50	0.61	14	14	14	18	38	55	14	18
	80	0.8	10	10	10	13	29	42	10	13
	125	1.15	7	7	7	9	20	29	7	9
	250	2.15	4	4	4	5	10	15	4	5
	400	3.25	2	2	2	3	7	10	2	3
	700	5.4	1	1	1	2	4	6	1	2
	1000	7.5	1	1	1	1	3	4	1	1
$\begin{aligned} & \text { High-pressure } \\ & \text { mercury-vapour } \\ & \text { lamps parallel } \end{aligned}$correction	50	0.28	4	4	4	5	31	47	4	5
	80	0.41	4	4	4	5	27	41	4	5
	125	0.65	3	3	3	4	22	33	3	4
	250	1.22	1	1	1	2	12	18	1	2
	400	1.95	1	1	1	1	9	13	1	1
	700	3.45	-	-	-	-	5	7	-	
	1000	4.8	-	-	-	-	4	5	-	-
Halogen metal vapour lampsuncorrected ,	35	0.53	18	18	18	22	43	60	18	22
	70	1	10	10	10	12	23	32	10	12
	150	1.8	5	5	5	7	12	18	5	7
	250	3	3	3	3	4	7	10	3	4
	400	3.5	3	3	3	3	6	9	3	3
	1000	9.5	1	1	1	1	2	3	1	1
	2000	16.5	-	-	-	-	1	1	-	-
Halogen metalvapour lamps parallel correction	35	0.25	5	5	5	6	36	50	5	6
	70	0.45	2	2	2	3	18	25	2	3
	150	0.75	1	1	1	1	11	15	1	1
	250	1.5	-	.	-	1	6	9	-	1
	400	2.5	-	-	-	1	6	8	-	1
	1000	5.8	-	\checkmark	-	-	2	3	-	-
	2000	11.5	-	-	-	-	1	2	-	-
High-pressure sodium-vapour	150	1.8	5	5	5	6	17	22	5	6
	250	3	3	3	3	4	10	13	3	4
	400	4.7	2	2	2	2	6	8	2	2
	1000	10.3	-	-	-	1	3	3	-	1
$\begin{aligned} & \text { High-pressure } \\ & \text { sodium-vapour } \\ & \text { lamps arallel } \\ & \text { correction } \end{aligned}$	150	0.83	1	1	1	1	11	16	1	1
	250	1.5	-	-	-	1	6	10	-	1
	400	2.4	-	-	-	-	4	6	-	-
	1000	6.3	-	-	-	-	2	3	-	-
Low-pressure sodium-vapour ps uncorrected	18	0.35	22	22	22	27	71	90	22	27
	35	1.5	7	7	7	9	23	30	7	9
	55	1.5	7	7	7	9	23	30	7	9
	90	2.4	4	4	4	5	14	19	4	5
	135	3.5	3	3	3	4	10	13	3	4
	180	3.3	3	3	3	4	10	13	3	4
Low-pressuresodium-vapourlamps parallel correction	18	0.35	6	6	6	7	44	66	6	7
	35	0.31	1	1	1	,	11	16	1	1
	55	0.42	1	1	1	1	11	16	1	1
	90	0.63	1	1	1	1	8	12	1	1
	135	0.94	-	-	-		4	7	-	
	180	1.16	-	-	-	-	5	8	-	-

EAN codes for VS

v120

VS12001 24V AC/DC: 8595188129848 VS120-01 230V AC/DC: 8595188123105
SI20-10 24V AC/DC: 8595188129367 VS120-10 230V AC/DC: 8595188123112

VS425-0424VACIC: 8595188129527 VS425-04 48V AC/DC: 8595188129558 S S425-04 110V AC/DC: 85959188160032 VS425-13 230V AC/DC: 8595188129473 V4425-22 24V ACIDC: 8595188129541 VS425-22 230V AC/DC: 8595188121675
V4425-31 24V AC/DC: 8595188129497 VS425-31 48V ACIDC: 8595188137898 VS425-31 230V AC/DC: 8595188121668
V545-40 24V AC/DC: 8595188129480 VS425-40 48V AC/DC: 8595188136174 SS425-40 230 V ACDC: 8595188121651

V5220
VS220-02 24V AC/DC: 859518812938 VS220-02 110V AC/DC: 8595188138628 VS220-02 230V AC/DC: 8595188121427 VS220-11 24V AC/DC: 8595188129374 VS220-11 48V AC/DC: 8595188129398 VS220-11 110V AC/DC: 8595188130790
VS220-11 230V AC/DC: 8595188121408

VS220-20 24V AC/DC: 859518812525 VS220-20 48V AC/DC: 859518812941 VS220-20 110V AC/DC: 8595188129428 VS220-20 230V AC/DC: 859518812139

VS440
VS440-04 24V AC/DC: 859518812929 VS440-04 110V AC/DC: 859518812930 4540-04230V ACDC: 8595188121484
VS440-22 24V AC/DC: 8595188129787 VS440-22 230V ACIDC: 859518812147

VS440-31 24V AC/DC: 8595188129572 VS440-31 230V AC/DC: 8595188121460

VS440-40 24V AC/DC: 859518812956 VS440-40 THV ACCDC: 8595188138567
VS440-40 $230 V$ AC/DC: 859518812145

VS420

VS420-31 24V AC: $\quad 8595188129442$ VS420-31 110V AC: 8595188129466 VS420-31 230V AC: $\quad 859518812144$ VS420-40 12V AC: $\quad{ }^{859518812945}$ VS420-40 24V AC: $\quad 859518812943$ | VS420-40 48V AC: | |
| :--- | :--- |
| VS $420-40$ | 859518813858 |

vs463
VS463-22 24V ACIDC: 8595188129794
VS463-22 230V ACDC: 8595189121514 VS463-31 24V AC/DC: 859518812959 VS4633-1 2 V AC/DC: 859518881379

VS463-40 24V AC/DC: 8595188129589 VS566-40-48V AC/DC: 8595188160612 VS463-40 110V AC/DC: 8595188140652

EAN codes for VSM

VSM220
VSM220-02 24V AC: 8595188129817 VSM220-02 230V AC: 8595188128100
VSM220-11 24V AC: 859518812980 VSM220-11 230V AC: 8595188128094

VSM220-20 12VAC: 8595188138369 SM220-20 24V AC: 85951881281 SM220-20 110V AC: 85951881602 VSM220-20 230V AC: 859518812808

SM4
VSM425-04 24V AC: 859518812983 VSM425-04 230V AC: 859518812815
VSM425-22 24V AC: 8595188129336 VSM425-22 230V AC: 8595188128148 VSM425-31 24VAC: 8595188129824 VSM425-31 230V AC: 859518812813
VSM425-40 12VAC: 8595188160049 $\begin{array}{l:l}\text { VSM425-40 24V AC: } & 8595188128162 \\ \text { VSM425-40 230V AC: } & 859518812812\end{array}$

EAN codes for VSK and covers

VSK-11:	85951882121613 VSK-20:
5595188121606	
VSS220:	8595188121576
VS425:	8551882121583
VS440:	8595188121590

R-216-10

Number of ontatacts: 1×16 A.
Switch configuration

BR-216-11 Number of contact: 22 16 A Swith confonaration
and N C Contacts 11.
noge page 62

TWILIGHT AND LIGHT SWITCHES

62 BR-216, BR-220, BR-232 | Bistable relays

 Main circuit (contact) Thermal current $\left(I_{1 N}\right)$: Number of poles: Contact configuration: Operational Power (P_{e}) AC-2 for $230 \mathrm{~V}, 1$ phase: AC-2 for $230 \mathrm{~V}, 1$ phase:
AC-3, $\mathrm{AC}-7 \mathrm{~b}$ for $230 \mathrm{~V}, 1$ DC-1 (L/R $\leq 1 \mathrm{~ms}$)
Ue $=244$ (1 contact// contacts in series):
$\mathrm{Ue}=48 \mathrm{~V}(1$ contact/2 contacts in series): $\mathrm{Ue}=60 \mathrm{~V}(1$ contact $/ 2$ contacts in series): Ue $=110 \mathrm{~V}$ (1 contact $/ 2$ contact in series):
Ue $=220 \mathrm{~V}(1$ contact $/ 2$ contacts in series): $\mathrm{Ue}=220 \mathrm{~V}(1$ contact $/ 2$ contacts in series): Max. operating frequency (op./hr) without load:
AC-1, AC-7a: $\mathrm{AC-1,1,-7}$
$\mathrm{AC}-2 \mathrm{~F}$ AC-3, AC-7b: AC-Sa,
$\mathrm{DC}-1$ DC-1: endurance: DC-1, DC-3, DC-5, $\mathrm{AC}-1, \mathrm{AC}-\mathrm{Za}, \mathrm{AC}-2, \mathrm{AC}-3$
Mechanical lifetime: Power dissipation per pol Contact reliability:
Max. back-up fuse against short circuit g L/gG (I) - coordination type 1: Rated impulse with : :and voltage $\left(U_{\text {imp }}\right)$:
Overload current withstand capability Terminal capacity (solid and stranded): Maximum tightening torque: Screw head: $\frac{\text { Control circuit (coil) }}{\text { Rated control voltage: }}$ Rated control voltage: Rated frequency:
Impulse duration: impulse duration:
Duration between two impulses (of control voltage): Maximum load of illuminated buttons (glow lamps, EES ,... Terminal capacity (solid and stranded): Maximum tightening torque: Screw head: General Mounting:
Dear of contactors or switches side-by-side Operational Iemperatu

Storing temperature:
Disconnection of remote control (coil) by switch: Standards:

BR-216-10/11/20 BR-220-20 BR-232-20

440 V		
16 A	20 A	32 A
1,2,2		2
10, 11, 20	20	20
3.5 kw	4.4 kW	7 kW
1.2 kw	1.5 kw	2.4 kW
0.37 kW	0.55 kW	1.1 kW
16A/16A	20A/20A	32A/32A
12A/5A	15A/18A	25A/28A
8A/14A	10A/15A	20A/22A
4A/7A	5A/8A	7A/12A
0.4A/3A	0.5A/4A	0.7A/6A
900	900	450
600	600	450
120	120	120
600	600	450
600	600	450
	300	

Connection
BR-216-10

BR-216-20

BR-220-20

BR-232-20

Connection BR-216-10

BR-216, BR-220, BR-232 | Loadability of bistable relays

SOU-1
A1-A2
AC/DC $12-240 \mathrm{~V}(\mathrm{AC} 50 / 60 \mathrm{~Hz})$
$\mathrm{AC} 1.5 \mathrm{~V} / 0.9 \mathrm{~W}$
$\mathrm{AC} 230 \mathrm{~V}(50 / 60 \mathrm{~Hz})$
$3 \mathrm{VA} / 2 \mathrm{~W}$
3VA/2

$-15 \% ;+10 \%$
green LED
$0-2$ min

potentiometer
$1-100 \mathrm{Lx}$

- 100 Lx
$100-50000 \mathrm{~L}$

100-50000 Lx
$1 \times$ changeover (AgSI
$16 \mathrm{~A} / \mathrm{AC1}$
VA/AC1, 384 W/DC
$30 \mathrm{~A} /<3 \mathrm{~s}$
$250 \mathrm{VAC} / 24 \mathrm{VDC}$
red LED
red LED
70.000 operations
7.000 operation

Electrical life (AC Power the control input:
Load between $S-A 2$: Control. terminals: Impulse length: Reset time:
Other information Operating temperature: Storage temperature: Dielectrical strength: Operating position: Mounting: Protection degree:
Sensor cable length: Sensor cable length:
vervoltage category Polution degree:

Dimensions:

Weight:
Dimensions of sensor SKS-100:
Standards:
0.3 W
yes
yes
Al-S
min. $25 \mathrm{~ms} / \mathrm{max}$. unlimited 150 ms
$-20^{\circ} \mathrm{Cto}+55^{\circ} \mathrm{C}\left(--^{\circ} \mathrm{F}\right.$ to $\left.131^{\circ} \mathrm{F}\right)$ $-30^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}\left(-22^{\circ} \mathrm{F}\right.$ to $\left.158^{\circ} \mathrm{F}\right)$

$$
4 \mathrm{kV} \text { (supply- output }
$$

$$
\begin{gathered}
\text { any } \\
\text { DIN rail EN } 60715
\end{gathered}
$$

$$
\begin{aligned}
& \text { P40 from front panel/IP20 terminal } \\
& \text { max } 50 \mathrm{~m} \text { standard wiren) }
\end{aligned}
$$

max. 50 m (standard wire)
III.
2
solid wire max. 1×2.5 or $2 \times 1.5 /$ $90 \times 17.6 \times 64 \mathrm{~mm}(3.5 \times 0.7 \times 2.5 \mathrm{inch})$ UNI): $66 \mathrm{~g}(2.30 \mathrm{O}).(230 \mathrm{~V}) .63 \mathrm{~g}(2.202)$ $58 \times \varnothing 24 \mathrm{~mm}\left(2.3^{\prime \prime} \times \varnothing 0.9^{\prime \prime}\right)$ $58 \times \varnothing 24 \mathrm{~mm}\left(2.3^{3} \times \varnothing 0.9\right)$
$20 \mathrm{~g}(0.5$ oz. $)$ EN $60669-1$, en 60669-2-1

- Is used to control lights on the basis of ambient light intensity. Used for switching street illumination and garden lights, illumination of
advertismemts, shop advertisements, shop windows, etc.
and output is switched according to Control input for additional control, e.g. time switch device. Level of illumination adjustable in two ranges: 1-100 Ix and 100-50000 Ix.
Adjustable time delay to eliminate short term fluctuation in illumination. External sensor IP65 suitable for mounting on the wall (cover and holder of a sensor are a part of the package).

Description
Supply voltage terminals

LUX1: Range 1-100 Lx.
UX2: Range $100-50000 \mathrm{Lx}$.
TEST: By switching to position TEST all function are switched off and switching
contacts of output relay are switched on. The function TEST is used contacts of output relay are switched on. The function TEST is used
for testing of right connection of load and for verification of failure (breaking of the bulb).

Connection

Function

- Is used for control of lights on the basis of ambient light intensity and real time (combination of SOU-1 and time switch SHT-3 in one device). -Time clock can override the light sensor for applications when lights are not required.
Switching: according to a program (AUTO)/permanently manual/random (CUBE).
- External sensor IP65 issuitable for mounting on the wall/in panel (cover and sensors are part of delivery).
Backup of data and tim by bate panel
Backup of data and time by battery (up to 3 years).
front panelof device (no disassembly required). front panelof device (no disassembly required).

Description
Supply voltage terminal
(A11-A2)

$5 \times=1$	
	Controlling buttons
$\left.{ }^{15} 16\right\|^{18}$ \|	Plug-in module for replacement of the backup battery
Q800	

Description of visual elements on the display

(isplaying		
		Indication of peerating mode
Status indication		Displaying $12 / 24 \mathrm{~h}$ regime
Diplaying the set-up menu data		Indication of the switching program
Displaying the time	.1-1	Control butoo ESC
Control butoon PRG/+	OU-2 EES [145	
Reset	O	
	$\bigcirc{ }^{\text {pra }}$ O-	Control button OK

Connection
Symbol

Device is standardly supplied with jumper L-15 (3 -wire connection) For the correct function of device is neccesary sensor-side down device
mounting.

- IS used as control of the device on the basis of ambient light intensity. - External version in IP65, box for mounting on the wall, front cover removable without screws.
Built in high resolution
Built in ligh resolution light sensor.
Two devices in one, function is set by jumper:
- twilight switch - contact closes by decreasing of ambient light inten-
sity, and opens by its increasing. light switch - contact closes by increasing ambient light intensity, and opens by decreasing light intensity. Used for switcting of devices by
reaching of pre-set ambient light eevel usually sun shine (pulling down reaching of pre-set ambient light level, usually sun shine (pulling down
the shutters or blinds, activation of solar panels). adjustable levels of time delay (for elimination of
tions of light intensity - for short increases in light intensity) flermat

Description

Function

switching
Voltage 12 V

Voltage 24 V

switching

Nonstabilized AC

Bell transformers

$$
\text { .25A } 1.15 \mathrm{~W} .
$$

\qquad

$\underbrace{}_{\text {Ps3M-54/22V }}$

$$
\begin{aligned}
& {\left[\begin{array}{l}
\square \\
\vdots \\
=
\end{array}\right.}
\end{aligned}
$$

70 PS1M, PS2M, PS3M, PS4M | Power supplies, switching - stabilized

Rated output voltage 12 or 24V DC with the possibility of regulation High efficiency of up to 90%,

- Protection: Over I

Protection: Over load, Over voltage and Short circuit.

- Continuously adjustable output voltage to adapt to the specific appli-
cation, e.g. the need to compensate for the voltage drop caused by the Cation, e.g. पhe nee.
length of the line.

Technical parameters PS1M-15/12V PS1M-15/24V PS2M-24/12V PS2M-30/24V PS3M-54/12V PS3M-60/24V PS4M-85/12V PS4M-92/24V Input

Input									
Voltage range:	AC $100-240 \mathrm{~V}(50 / 60 \mathrm{~Hz})$								
Tolerance:	$\pm 10 \%$								
Efficiency:	85\%	86\%	88\%	89\%	88\%	90\%	88\%	90\%	
Burden without load (max):	0.3W/4VA	0.5W/4VA	0.3W/8va	0.4W/8VA	0.3W/7VA	0.5W/6.5VA	0.4W/11va	0.1W/2VA	
Burden with full load (max):	16W/30VA	17.5W/32VA	30W/50VA	33W/60VA	60W/95VA	70W/111va	95W/150VA	105W/160VA	
Inrush current:*	max. 25 A at 115 V AC/ $/ 6 \mathrm{~Hz}$ max. 45 A at $240 \mathrm{VAC} / 50 \mathrm{~Hz}$				max. 30A at 115 V AC/ $/ 6 \mathrm{~Hz}$ max. 60 A at $240 \mathrm{~V} \mathrm{AC} / 50 \mathrm{~Hz}$		max. 35 A at 115 V AC/60Hz max. 70 A at $240 \mathrm{VAC} / 50 \mathrm{~Hz}$		
Output									
Rated voltage:	12 VDC	24 VCC	12 VDC	24VDC	12 VDC	24 VDC	12 VDC	24VDC	
Vol. setting range:	11-13V	23-25V	11-13V	23-25V	11.4-12.6V	22.8-25.2V	11-13V	23-25V	
Rated current:	1.25 A	0.625A	2 A	1.25 A	4.5A	2.5 A	7.1A	3.83A	
Rated power:	15w	15w	24w	30w	54 W	60w	85.2w	92 W	
Ripple \& Noise:	120 mv	150 mv							
Output indication:	blue Led		blue LED		green LED		blue Led		
Tolerance of output voltage:	5\%								
Overload protection:	from $130 \%-200 \%$ rated output power								
Overvoltage protection:	from 110% - 145% rated output power								
Overcurrent protection:	from 110% - 180% rated output power								
Short circuit protection:	temporarily disconnecting the output								
Other information									
Operating temperature:	$-20^{\circ} \mathrm{C}$ to $+50^{\circ} \mathrm{C}\left(-4^{\circ} \mathrm{F}\right.$ to $\left.122^{\circ} \mathrm{F}\right)$								
Operating humidity:	20\% ~ 90\% RH non-condensing								
Storage temperatur:	$-40^{\circ} \mathrm{Cto}+80^{\circ} \mathrm{C}\left(-40^{\circ} \mathrm{F}\right.$ to $\left.1766^{\circ} \mathrm{F}\right)$								
Dielectric strength:	3 kV Ac								
Isolation resistance:									
Overvoltage category:	III.								
Pollution degree:	2								
Max. cable size:	max. $1 \times 2.5 \mathrm{~mm}$, max. $2 \times 1.5 \mathrm{~mm}^{2}$ solid wire/with sleeve max. $1 \times 2.5 \mathrm{~mm}^{2}$								
Terminal torque:									
input terminals	0.5 Nm		0.3 Nm		0.3 Nm		0.3 Nm		
output terminals	0.5 Nm								
Protection degree:	1 P 20								
MTBF:	200000 hours minimum, full load at $25^{\circ} \mathrm{C}$ ambient temperature								
Mounting:	din rail en 60715								
Dimensions:	$90 \times 18 \times 58 \mathrm{~mm}\left(3.5^{\prime \prime} \times 0.71^{11^{\prime}} \times 2.33^{\prime \prime}\right)$		$90 \times 35 \times 58 \mathrm{~mm}\left(3.5^{\prime \prime} \times 1.4^{\prime 4} \times 2.3^{\prime \prime}\right)$ $120 \mathrm{~g}(4.2$ oz.)		$90 \times 52.5 \times 58 \mathrm{~mm}\left(3.55^{\prime \prime} \times 2.1 .^{\prime \prime} \times 2.33^{\prime}\right)$		$90 \times 70 \times 58 \mathrm{~mm}\left(3.5^{\prime \prime} \times 2.88^{\prime \prime} \times 2.33^{\prime}\right)$		
Weight:	78 g (2.8 oz.)				190 g (6.7 oz.)		270 g (9.5 oz.)		
Standards:			IEC60950-1, UL508, TUV EN61558-2-16						

*the stated values are valid for the full load from the source

PS1M, PS2M, PS3M, PS4M | Power supplies, switching - stabilized

Description

Output voltage Θ
Output voltage Θ
Output volage \oplus

Output voltage indication		Adjusting the outut voltage
	output	
	ET:S	
	wnut	
	(3)	

Connection			
PS1M-15/12V (PS1M-15/24V)	PS2M-24/12V	PS3M-54/12V (PS3M-60/24V)	PS4M-85/12V (PS4M-92/24V)
$D C 12 \mathrm{~V} / 1.25 \mathrm{~A}$ $(\mathrm{DC} 24 \mathrm{~V} / 0.625 \mathrm{~A})$	$\begin{gathered} D C 12 \mathrm{~V} / 2 \mathrm{~A} \\ (\mathrm{DC} 24 \mathrm{~V} / 1.25 \mathrm{~A}) \end{gathered}$	$\begin{aligned} & \mathrm{DC} 12 \mathrm{~V} / 4.5 \mathrm{~A} \\ & (\mathrm{DC} 24 \mathrm{~V} / 2.5 \mathrm{~A}) \end{aligned}$	DC $12 \mathrm{~V} / 7.1 \mathrm{~A}$ $(\mathrm{DC} 24 \mathrm{~V} / 3.83 \mathrm{~A})$
18	$\stackrel{+}{\phi}$	$\dot{\phi} \quad \stackrel{+}{\phi}$	
	oc	c	-
ac	${ }_{\text {ac }}$		
\varnothing ¢	\varnothing ¢	\varnothing ¢	\varnothing ¢
\cdots L	\cdots	\checkmark N	\checkmark N

Regulated stabilized power supply ZSR-30
Supply of various devices and appliances by safe voltage with fully galvanic separation from the main.
Exceeded current limit values is C 24 V unstab. and AC 24 V .
When there is full short-circuit, outpated by LED flashing.
limited by an electronic fuse.
Nonstabilized power supply ZNP-10-24V

- AC and DC output voltage 24 V , nonstabilized.

Power supply with fixed output voltage.
Protection against short-circuit and overload by a safety fuse.

Description

ZNP-10-24V
Input voltage terminals

(1)

Designated for general use for home bells supply door lock supply.
Shert-al power supply with AC input voltage
-2-MODULE, DIN rail mounting,
ZTR-8-8: output voltage 8 V .
ZTR-8-12: output voltage 12 V

- 3-MODULE, DIN rail mounting.

ZTR-15-12: output voltage 4, 8,12V.

Connection

ZTR-8-12

ZTR-15-12

DIMmers and Light intensity controllers

DIMMERS AND LIGHT INTENSITY CONTROLLERS

Key to symbols

PE OF	$\begin{gathered} \text { bulbs, } \\ \text { halogen lamps } \end{gathered}$	low-voltage el.bulbs 12/24V wound transformers	low-voltage el.bulbs $12 / 24 \mathrm{~V}$ electronic transformers	ESL dimmable compact fluorescent lamps	Dimmable LED bulbs
(symbols)	$\xrightarrow{(M)}$	-1\|I	に-【,	마 \square	(4)

Demonstrated symbols are informative

Expandatory

Dimmer with designated load
R - resistive
L- inductive
C- capacitive
ESL- energy saving bulbs
ED' - dimmable LED bulbs, designed for dimmers with phase-controlled rising edge (triac dimmers)
LED ${ }^{2}$ - dimmable LED bulbs designed for dimmers with phase or phase-to-phase phase control (dimmers with MOSFET).

IPxx protection - under normal conditions: normal conditions are understood as such conditions of operating an electrical device, installation and power IPxx protection - under normal conditions: normal conditions are understood as such conditions of operating an electrical device, installation and power
supply network for which the entire device is designed, produced and installed. Upon these normal conditions of use and upon normal maintenance, all protective devices must be effective throughout the entire expected service life of the product.

Recommendation for mounting modular dimmers: leave a gap of min. 0.5 module (approx. $9 \mathrm{~mm} / 0.4^{\prime}$) on side of the device to ensure better cooling of the
device.

Technical parameters	DIM-15	SMR-M
Supply terminals:	A1 - A2	\times
Voltage range:	\times	4 -wire, with neutral
Operating range:	AC $230 \mathrm{~V} / 50 \mathrm{~Hz}$	
Burden (unloaded):	max. 2 VA/0.55 W	max. $0.66 \mathrm{VA} / 0.55 \mathrm{~W}$
Max. dissipated power:	2 w	3 W
Supply voltage tolerance:	-15%; 10%	
Supply indication:	green LED	
Control		
Control terminals:	A1-T	\times
Control wire:	\times	L-S
Control voltage:	AC 230 V	
Control input power:	AC 0.3-0.6 VA	
Control impulse lenght:	min. $80 \mathrm{~ms} / \mathrm{max}$. unlimited	
Glow tubes connection:	Yes	
Max. amount of glow lamps connected to controlling input:	max. 15 pcs (measured with glow lamp 0.68 mA $230 \mathrm{VAC})$	max. 10 pcs (measured with glow lamp 0.68 mA $230 \mathrm{VAC})$
Output		
Contactless:	$2 \times$ MOSFET	
Load:	$300 \mathrm{~W}(\operatorname{atcos} \varphi=1)^{*}$	$160 \mathrm{~W}(\mathrm{at} \cos \varphi=1)^{*}$
Output status indication:	red LED	\times
Other information		
Operating temperatur:	$-20^{\circ} \mathrm{Cto}+35^{\circ} \mathrm{C}\left(-4{ }^{\circ} \mathrm{Fto} 95^{\circ} \mathrm{F}\right)$	
Storing temperature:	$-20^{\circ} \mathrm{Cto}+60^{\circ} \mathrm{C}\left(-4^{\circ} \mathrm{F}\right.$ to $\left.140^{\circ} \mathrm{F}\right)$	
Operating position:	any	
Mounting:	din rail en 60715	free at connecting wires
Protection degree:	IP40 from front panel/ IP10 clips	IP30 in standard conditions**
Overvoltage category:	III.	
Pollution level:	2	
Terminal wire capacity (mm):	max. 2×2.5, max. 1×4 with sleeve max. 1×2.5, max. 2×1.5 (AWG 12)	\times
Connection wires (cross-section/lenght)	\times	$\mathrm{CY}, 0.75 \mathrm{~mm}^{2}$ (AWG 18)/ 90 mm (3.5")
Dimensions:	$90 \times 17.6 \times 64 \mathrm{~mm}$ (3.5" $\left.\times 0.69^{\prime \prime} \times 2.5^{\prime \prime}\right)$	$\begin{gathered} 49 \times 49 \times 21 \mathrm{~mm} \\ \left(1.9^{9} \times 1.9^{9} \times 0.83^{\prime}\right) \end{gathered}$
Weight:	58 g (20z.)	33 g (1.20z.)
Standards:	EN 60669-1, en 60669-2-1	

* Due to a large number of light source types, the maximum load depends on the internal construction of dimmable light sources and their pow
factor cos φ. The power factor of dimmable LEDs and ESL bulbs rang from $\cos \varphi=0.95$ to 0.4 . An approximate value of maximum load may be obtained by multiplying the load capacity of the dimmer by the powe For more information see page 75 .
wamne time. hot allowed to connect inductive and capacitive loads at the same time.

Designed for dimming of incandescent bulbs and halogen lights with Designed for dimming of incandescent bubs and halogen lights with
wound or electronic transformer, dimmable light bulbs and dimmable LED². Enables gradual buttons.
Returns to last state upon re-energization

- Type of light source is set by switch-over on the front panel of device. - Min. luminance, set by potentiometer on the front panel, eliminates
flashing of light sources.

LED²: more informations on page 75

Connection

SMR-M

Symbol

DIM-15
(SMR-M

Supply voltage L

Functions and controlling

-short button press (<0.5s) turns
the light off or on

- - 1 eng press (70.5 s) enables slig
regulation of light intensity - setting of minimal luminance is possible only during decreasing of luminance by long button
press
- setting of minimal luminance by
saving fuorescent lamps serves saving fluorescent lamps serves for harmonizing of lowest light intensity prior its unprompted switching off

Luminance setting:
LED, R, L, C:

- if the light is turned off, short press $(<0.5 \mathrm{~s}$ switches the light
onto last set luminance lent ESL:
when light is off, short impulse turns lamp on and then level

Connection example

Additional information

it is not possible to dim energy-saving lamps without marking: dimmable
an incorrect setting of light source has effect only on dimming range, it means neither dimmer or load get damaged
max. number of dimmable light sources depends on their internal structure
it is not recommended to connect light sources with diff erent types and brands, to one dimmer

Technical parameters	DIM-2
Supply terminals:	A1-A2
Voltage range:	AC $230 \mathrm{~V} / 50 \mathrm{~Hz}$
Burden (unloaded):	max. $8 \mathrm{VA} / 0.6 \mathrm{~W}$
Max. dissipated power:	1.5 W
Supply voltage tolerance:	-15%; 10%
Supply indication:	green LED
Time setting by:	potentiometers
Time deviation:	10%-mechanical setting
Repeat accuracy:	5% - set value stability
Temperature coefficient:	$0.01 \% /{ }^{\circ} \mathrm{C}$, at $=20^{\circ} \mathrm{C}\left(0.01 \% / /^{\circ} \mathrm{F}, \mathrm{at}=68{ }^{\circ} \mathrm{F}\right)$
Recovery time:	max. 80 ms
Controlling T1 (button)	
Terminals:	T1-A1
Voltage:	AC 230 V
Power on control input:	max. 1.5 VA
Impulse length:	min. $100 \mathrm{~ms} / \mathrm{max}$. unlimited
Glow-lamps:	Yes

Max. amount of glow lamps innut:- controlling input:

Controlling T 2 (switch)

 Terminals:Voltage:
Power on control input: Impulse length:

Output	
Contactless:	1xtriac
Currentrating:	2 A
Resistance load:	10-500 VA
Inductive load:	$10-250 \mathrm{VA}$
Other information	
Operating temperature:	$-20^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}\left(-4{ }^{\circ} \mathrm{F}\right.$ to $\left.131{ }^{\circ} \mathrm{F}\right)$
Storage temperature:	$-30^{\circ} \mathrm{Cto}+70^{\circ} \mathrm{C}\left(-22^{\circ} \mathrm{F}\right.$ to $\left.158{ }^{\circ} \mathrm{F}\right)$
Operating position:	any
Mounting:	DIN rail EN 60715
Protection degree:	\|P40 from front panel/IP10 terminals
Overvoltage category:	III.
Pollution degree:	2
Max. cable size ($m \mathrm{~m}$) ${ }^{\text {a }}$	solid wire max. 2×2.5 or $1 \times 4 /$ with sleeve max. 1×2.5 or 2×1.5 (AWG 12)
Dimensions:	$90 \times 17.6 \times 64 \mathrm{~mm}\left(3.5^{4} \times 0.7^{\prime \prime} \times 2.5{ }^{\prime}\right)$
Weight:	$64 \mathrm{~g}(2.3$ oz)
Standards:	EN 60669-1, , ${ }^{\text {6 }}$ 60669-2-1

Symbol

-Designated for dimming el. bulbs, halogen lights and halogen lights with winding transformers and Dimmable LED'
-Intelligent control of halogen lights, function of gradual switching on and dimming.

- Controlling inputs for push button and switch.
-Values are set on front panel of the product, adjustable:
- maximum dim-up
- speed (fluency of di
speed (fluency) of dim-up
- speed (fluency) of dim-down
- time for which a light is on with maximum dim-up.
- Output without contact: $1 \times$ triac.
- Parallel connection of controlling pushbuttons is possible.
- Protection against over-temperature inside the product - switches out-
put off + signalizes overheating by LED flashing. put off + signalizes overheating by LED flashing.
Note: possibility of start and finish adjustment up on 1 second to 1 hour. device has description DIM-2 hh.
Description

Recommendation for mounting: leave a gap of min. 0.5 module (approx. $9 \mathrm{~mm},\left(0.3^{\prime}\right)$) on side of the device to ensure better cooling of the device.

Connection

Function

Controlled via input 11 (button)

Dim-up delay-down is started
Dim-up delay-down is started
by a button. Cycle extensionby re-pressing button (during the cycle).

res designated for flush mounting into a wiring box.

- Possible to control from more places (parallel connections. - Protection against temperature overrun inside the device.

Designated for dimming el. bulbs, halogen lights and halogen lights with winding transformers and Dimmable LED
Max. load: 300 VA (el. bulbs or halogen lights with wound transformer), Contactless output - $1 \times$ triac.

- With exchangeable fuse.

Technical parameters	SMR-S
Connection:	3 -wire con, without neutral
Voltage range:	$230 \mathrm{VAC}(50 \mathrm{~Hz})$
Burden (unloaded):	max. $0.66 \mathrm{VA} / 0.55 \mathrm{~W}$
Max. dissipated power:	3 W
Supply voltage tolerance:	$-15 \% ;+10 \%$
Output	
Contactless:	1xtriac
Resistive load:	$10-300 \mathrm{VA}$
Inductive load:	10-150 VA
Capacitive load:	\times
Control	
Control voltage:	AC 230 V
Current:	max. 3 mA
Impulse lenght:	min. $50 \mathrm{~ms} /$ max. unlimited
Glow tubes connection:	Yes
Max. amount of glow lamps connected to controlling input:	230 V -max. amount 10 pcs (measured with glow lamp $0.68 \mathrm{~mA} / 230 \mathrm{~V} \mathrm{AC}$)
Other information	
Operating temperature:	$0^{\circ} \mathrm{Cto}+50^{\circ} \mathrm{C}\left(32^{\circ} \mathrm{Fto} 122^{\circ} \mathrm{F}\right)$
Operating position:	any
Mounting:	free at connecting wires
Protection degree:	1 P 30 in standard conditions*
Overvoltage category:	III.
Pollution degre:	2
Fuse:	F $1.6 \mathrm{~A} / 250 \mathrm{~V}$

Connection wires:
Glow lamps in a button:
Dimensions:
Standar
solid wires $0.75 \mathrm{~mm}^{2}$ (AWG $18 / 90 \mathrm{~mm}$ (3.5 inch) max. number 10
$49 \times 49 \times 13 \mathrm{~mm}\left(1.9^{" 9} \times 1.9^{*} \times 0.5\right)$ $30 \mathrm{~g}(1.0602$)

* for more information see page 75

Description of SMR-S

Connection

Warning: it cannot be used for fluorescent lights and energy saving lights!

Short press (0.5 s) turns a light on, another short press turns it off. A longer press ($>0.5 \mathrm{~s}$) causes a gradual regulation of light intensity min
max-min round until the button is released. After releasing a set intensity is kept in memory, further short presses turn the light on/off keeping the set intensity. The intensity can be changed by further long press. After de-
energising the relay remembers the set value.

LIC-1
A1-A2

LIC-1 + SKS-100: 8595188144933 Photosensor SKS-100: 8594030337288	SKS-100
Technical parameters	LIC-1
Supply terminals:	A1-A2
Supply voltage:	AC 230 V (50/60 Hz)
Burden (unloaded):	max. $1.6 \mathrm{VA} / 0.8 \mathrm{~W}$
Max. dissipated power:	1 w
Supply voltage tolerance:	$\pm 15 \%$
Power supply indication:	green LED
Control	
Button - control. terminals:	A1-T
Control voltage:	AC 230 V
Control input power:	max. 0.6 VA
Control impulse lenght:	min. $80 \mathrm{~ms} / \mathrm{max}$. unlimited
Glow tubes connection (terminals: A1-T):	Yes
Maximum number of connected glow lamps the control input:	230 V - max. amount 50 pcs (measured with glow lamp $0.68 \mathrm{~mA} / 230 \mathrm{VAC}$)
Blocking input -terminals:	A1-B
Control. voltage:	AC 230 V
Supply:	max. 0.1 VA
Connect glow-lamps (terminals A1-B):	No
Impulse length:	min. $80 \mathrm{~ms} / \mathrm{max}$. unlimited
Output	$2 \times$ MOSFET
Output status indication:	red LED
Load capacity:*	$300 \mathrm{VA}($ at $\cos \varphi=1)$
Other information	
Operating temperature:	$-20^{\circ} \mathrm{Cto}+35^{\circ} \mathrm{C}\left(-4^{\circ} \mathrm{Fto} 95^{\circ} \mathrm{F}\right)$
Storage temperature:	$-20^{\circ} \mathrm{C}$ to $+60^{\circ} \mathrm{C}\left(-4{ }^{\circ} \mathrm{F}\right.$ to $\left.140^{\circ} \mathrm{F}\right)$
Operating position:	any
Mounting:	DIN rail EN 60775
Ingress protection:	IP40 from front panel/IP10 terminals
Overvoltage category:	III.
Contamination degre:	2
Connecting conductor	solid wire max. 2×2.5 or 1×4
cross-section (mm):	with sleeve max. 1×2.5 or 2×1.5 (AWG 12$)$
Dimensions:	$90 \times 17.6 \times 64 \mathrm{~mm}\left(3.5^{\prime \prime} \times 0.7^{\prime \prime} \times 2.5{ }^{\prime \prime}\right)$
Weight:	66 g (2.33 oz.)
Standards:	EN 60669-1, en 60669-2-1

* Due to a large number of light source types, the maximum load depends on the internal construction of dimmable LEDS and ESL bubss and their power factor $\cos \varphi$. The power factor of dimmable LEDs and ESL bulbs
ranges from $\cos \varphi=0.95$ to 0.4 . An approximate value of maximum load anges from $\cos \varphi=0.95$ to 0.4 . An approximate value of maximum load
may be obtained by multiplying the load capacity of the dimmer by the power factor of the connected light source.

Warning: it is not allowed to connect inductive and capactive loads at the same time.

Designed for dimming of incandescent bulbs and halogen lights with wound or electronic transformer, dimmable light bulbs and dimmable LED2.

External sensor scans the intensity and based on the preset value it decreases or increases the brightness of light.
1 -Off
1- Off
2-Auto
matic requlation

- Cleaning (maximum level of illumination)

4- Setting the minimum lighting brightness
5 - Setting the desired level of illumination.
5- Setting the desired level of illumination.

- Optional connection of buttons with 50 neon lamps.
For more information, see page 75
Description

Connection

Function

T-button control:
pressing button shortly (0.5 s) always turns of lamp pressing button longer (0.5 to 3 s) turns on lamp in automatic regulation
mode
pressing button long (> 3) turns on lamp to full illumination - „cleaner" mode

Thyristor B:
serves to block automatic regulation (lamp turns off).
WARNING! The lamp may be turned on in "cleaner" mode even while Alocked.
Symbol

Technical parameters	LIC-2
Supply terminals:	L-N
Supply voltage:	AC $100-250 \mathrm{~V}(50 / 60 \mathrm{~Hz})$
Consumption apparent/loss:	max. $2.7 \mathrm{VA} / 1.4 \mathrm{~W}$
Max. dissipated power	
(Un+terminals:	4w
Power supply indication:	green LED
Control	
Button - control terminals:	L-T
Control voltage:	AC $100-250 \mathrm{~V}$
Impulse length:	min. $80 \mathrm{~ms} / \mathrm{max}$. unlimited
Glow tubes connection:	No
Button - control terminals:	L-B
Glow tubes connection:	No
Duration of control pulse:	min. $80 \mathrm{~ms} / \mathrm{max}$. unlimited
Output 1	
Analog:	0-10 V/10 mA max. or 1 - $10 \mathrm{~V} / 10 \mathrm{mAmax}$.
Terminals:	OUT, OUT-
Galvanically separated:	Yes
Output 2	
Number of contacts:	1x switching (AgSnO ${ }^{\text {a }}$)
Currentrating:	$16 \mathrm{~A} / \mathrm{AC1}$
Switching capacity:	$4000 \mathrm{VA} /$ AC1, $384 \mathrm{~W} / \mathrm{DC}$
Peak current:	$30 \mathrm{~A}<3 \mathrm{~s}$
Switching voltage:	$250 \mathrm{VAC} / 24 \mathrm{VDC}$
Output indication:	red LED
Mechanical life:	30.000 .000 operations
Electrical life (AC1):	70.000 operations
Other information	
Operating temperature:	-20 to $+55^{\circ} \mathrm{C}\left(-4\right.$ to $\left.1311^{\circ} \mathrm{F}\right)$
Storage temperature:	-20 to $+60^{\circ} \mathrm{C}\left(-4\right.$ to 140 $\left.0^{\circ} \mathrm{F}\right)$
Operating position:	any
Mounting:	din rail en 60715
Ingress protection:	IP40 from front pane//P20 terminals
Overvoltage category:	III.
Contamination degre:	2
Connecting cond. cross-	max. 1×2.5, max. 2×1.5,
section (mm):	with sleeve max. 1×2.5 (${ }^{\text {aWg }} 12$)
Dimensions:	$90 \times 17.6 \times 64 \mathrm{~mm}\left(3.5^{\prime \prime} \times 0.7^{\prime \prime} \times 2.5{ }^{\prime \prime}\right)$
Weight:	79 g (2.8 oz.)
Standards:	EN 60669-1, en 60669-2-1

Symb

Serves as control unit for dimmers or electronic ballasts with analog con-
trol $0-10 \mathrm{~V} / 1-10 \mathrm{~V}$. trol 0-10 V/ $1-10 \mathrm{~V}$.
g intensity (automatic regulation).
switch OFF
automatic regulation
cleaning (maximum illumination level).
Stting the basic parameters of lighting is performed by potentiometers:
min. brightness of illumination
maximum illumination level
speed of dimming/illumination

Device description	
Inputs for photosensor (IN1-IN2)	
Analog output OUT (t)	Analog output OUT (-)
Supply voltage indication	
P1-operating mode setings	
	Selection 0-10V/1-10
Speed of dimmingillumination* (\%)	
Relay output (V)	Supply voltage (L)
Supply voltage (N)	
Blocking input (B)	Control input (T)

Connection

Functions
short press (<0.5s) -always switches off output (relay and output voltage)
-longer press (0.5 to 3 s) - runs automatic requlation of brightness leve -long press $(>3 \mathrm{~s}$) - sets the max. brightness level (CLEANING mode).
Blocking input function
switches off lighting - only in automatic requlation mode (has no nce in CLEANING mode), e.g. for central switching off of
ghing
Output relay
if the DC outpuys upon switching on the lighting using the button 1 V (for the mode $1-10 \mathrm{~V}$) 1V (for the mode $1-10 \mathrm{~V}$)
-upon switching off the ligh
drops below the stated limits. the relay opens if the output voltage
Red LED
illuminates upon active ouput (at any brightness level)

RFDEL－76M is a universal 6 －channel actuator，which is used to control the bright ness intensity of dimmable sources R－L－C－LED－ESL．
－The maximum possible load is 150 VA for 230 V and 75 VA for 120 V for each The individual channels of the dimmer can be connected in parallel and thus increase the maximum output load at the expense of the number of ou dadressable． By setting the min．brightness eliminates flickering of different types of li－
ght sưrces，setting min．brightness and type of load is done using the RROG
buttons buttons．
Electronic overcurrent，thermal and short－circuit protection，which switches off
6 galvanicaly isolated inputs for wired buttons，which can be used to control the Communication wntly of the RF
ternal AN－I antenna，in case of placement of a sheet metal distribution ele anent． ．

Description

		For external inputs control buttons
Powerindication		Programming buttons／Manual control
RFantenna		
Status indication channel	somet	
	come	
	00000000000000000	
Powersupply		Outputs

Connection
$\underset{\substack{\text { Control } \\ \text { votage }}}{\text { con }}$

Warning：it is not allowed to simultaneously connect loads
inductive and capacitive type in the same channe．
Types of connectable loads

（1）4）		ワこ－【イ	叫	＊
$\underset{\text { restive }}{\text { R }}$	${ }_{\text {inductive }}^{\text {L }}$	$\underset{\text { copactive }}{\text { c }}$	$\underset{\text { light }}{\text { Led }}$	

USS | Controlling and signalling modules

Independent switch units designed for flexible controlling and switch ing of power circuits.

- USS - "Do It Yourself" = it is possible to "click into" different types of switches and signalling units into the basic module
sure delvered as components and configured by the user.
16 types of units: switches, push buttons, signal lights of different col ours including flashing lights units are replaceable also for future (for example when an application is changed, extended, etc...).
- Units are also replaceable in the future (for example when an applica
tion is changed, extended etc. tion is changed, extended, etc...
- It is possible to place up to two units into one MODULE (for example 2x switch, $2 x$ signalling lights or combinations) $=$ saves space in switch soard panels.
- 1-MODULE $(90 \times 17.6 \times 64 \mathrm{~mm} / 3.5 \times 0.7 \times 2.5)$, DN ${ }^{\circ}{ }^{\circ}$.
- M3 screw with clamp terminals.

Connection
 Connection of signalling light

Installing the USS into the module

Examples of mounting

USS-01 + USS-03
US5-07 + USS-11

uss-11 + USS-01

US5-07 + US5-00

MONITORING RELAY－VOLTAGE，SPECIAL

1－phase

3－phase

Optical signaling

Power factor
Frequency

MONITORING RELAY－VOLTAGE，SPECIAL

Type	呂	$\begin{aligned} & \text { g } \\ & \frac{\square}{0} \\ & \stackrel{0}{0} \end{aligned}$	Secure variables							Setting			Description	\％
			$\begin{aligned} & \text { 畄 } \\ & \frac{4}{2} \end{aligned}$		$\stackrel{\lambda}{\wedge}$	$\stackrel{\rightharpoonup}{v}$	$\stackrel{\stackrel{y y}{3}}{\text { 흔 }}$		旁	$\frac{\text { ते }}{\text { a }}$				
$\begin{aligned} & \text { HRN-41/230 V } \\ & \text { HRN-41/400 V } \end{aligned}$ HRN-41/24 V	3－M	$\begin{aligned} & A C 230 V \\ & A C D 00 \\ & A C D C 24 V \end{aligned}$	1	AC／DC 50 V AC／DC 160 V AC／DC 500 V AC／DC500	－	－	\times	\times	\times	－	－	－	Second relay function（independent／parallel） Galvanically separated power supply from measuring inputs．	92
HRN－42／230V HRN－42／24V HRN－42／24	3－M	$\begin{aligned} & \text { AC 230V } \\ & \text { ACIDC 24V } \end{aligned}$	1	AC／DC 50 V AC／DC 500 V	－	－	\times	\times	\times	－	－	－		
Hen－33	${ }^{1-M}$	from monitored	1	AC 48－276V	－	－	\times	\times	\times	－	\times	\times	For all types，the delay is adjustable from 0－10 seconds（to eliminate short－term outages or peaks）． The lower voltage level（ $U \mathrm{~min}$ ）is set in \％of the upper level （Umax）．	9
HRN－34	${ }^{1-M}$	$\begin{gathered} \text { from } \\ \text { monitored } \end{gathered}$	1	DC6－30V	－	－	\times	\times	\times	－	\times	\times		
HRN－35	${ }^{1-\mathrm{M}}$	$\begin{gathered} \text { from } \\ \text { monitored } \end{gathered}$	1	AC 48－276V	－	－	\times	\times	\times	－	\times	\times		
HRN－37	${ }^{1-M}$	$\begin{gathered} \text { from } \\ \text { monitored } \end{gathered}$	1	AC 24－150V	－	－	\times	\times	\times	－	\times	\times		
HRN－63	${ }^{1-M}$	$\begin{gathered} \text { from } \\ \text { monitored } \end{gathered}$	1	AC 48－276V	－	－	\times	\times	\times	－	\times	\times		
HRNV 64	${ }^{1-M}$	from monitored	1	DC 6 －30V	－	－	\times	\times	\times	－	\times	\times		
HRN－67	${ }^{1-M}$	$\begin{gathered} \text { from } \\ \text { monitored } \end{gathered}$	1	AC $24-150 \mathrm{~V}$	－	－	\times	\times	\times	－	\times	\times		
HRN－54	1－M	$\begin{gathered} \text { from } \\ \text { monitored } \end{gathered}$	3	AC3 3 300－500V	－	－	－	－	\times	－	\times	\times	Power supply from all phases，i．e．the relay function is preserved even if one phase fails．	96
HRN－54N	1－M	${ }_{\text {fromed }}^{\text {fromed }}$	3	AC3x 172－287V	－	－	－	－	\times	－	\times	\times	Power supply L1－N，i．e．the relay also monitors the neutral wire interruption．	
HRN－55	1－M	$\underset{\substack{\text { from } \\ \text { monitoed }}}{\text { den }}$	3	AC3 3 300－500V	\times	\times	－	－	\times	－	\times	\times	Power supply from all phases，i．e．the relay function is preserved even if one phase fails．	94
HRN－55N	1－M	$\underset{\substack{\text { from } \\ \text { monitored }}}{ }$	3	AC $3 \times 172-287 \mathrm{~V}$	\times	\times	－	－	\times	－	\times	\times	Power supply L1－N，i．e．the relay also monitors the neutral wire interruption	
HRN－57	1－M	$\begin{aligned} & \text { from } \\ & \text { monitored } \end{aligned}$	3	AC3 3 300－500V	－	－	－	\times	\times	－	\times	\times	Power supply from all phases，i．e．the relay function is preserved even if one phase fails．	95
HRN－57N	1－M	$\begin{gathered} \text { from } \\ \text { monitored } \end{gathered}$	3	AC3x $172-287 \mathrm{~V}$	－	－	－	\times	\times	－	\times	\times	Power supply L1－N，i．e．the relay also monitors the neutral wire interruption，replacement for HRN－52．	
HRN－56／208 HRN－56／240 HRN－56／400	1－M	$\underset{\text { monom }}{\text { montored }}$	3	$\begin{aligned} & \text { AC } 3 \times 125-276 \mathrm{~V} \\ & \text { AC } 3 \times 144-276 \mathrm{~V} \\ & \mathrm{AC} 3 \times 240-460 \mathrm{~V} \end{aligned}$	\times	－	－	－	\times	－	\times	\times	Thanks to the power supply from all three phases，the relay is operational even if one phase fails．	97
$\begin{aligned} & \text { HRN-56/480 } \\ & \text { HRN-56/575 } \end{aligned}$	3－M	$\begin{gathered} \text { from } \\ \text { monitored } \end{gathered}$	3	$\begin{aligned} & \text { AC } \times 2228-550 \mathrm{~V} \\ & \text { AC } 3 \times 345-660 \mathrm{~V} \end{aligned}$	\times	－	－	－	\times	－	\times	\times		
HRN－43／230V HRN－43／400V HRN－43／24V	3－M	$\begin{aligned} & \text { AC } 230 \mathrm{~V} \\ & \text { AC C O V } \\ & \text { ACDC } 24 \mathrm{~V} \end{aligned}$	3	AC3 $\times 84-480 \mathrm{~V}$	－	－	－	－	－	－	－	－	2 output relays，functions of the second relay may be selected （independent／parallel）． Galvanically separated power supply	98
HRN－43N／230 V HRN－43N／400 V HRN－43N／24V	3－M	$\begin{aligned} & \text { AC } 230 \mathrm{~V} \\ & \text { AC C OOV } \\ & \text { AC/DC } 24 \mathrm{~V} \end{aligned}$	3	AC3 4 48－276V	－	－	－	－	－	－	－	－		
HRN－100	2－M	$\underset{\text { from }}{\text { monitoed }}$	3	$\begin{aligned} & u_{u m=3 \sim 155-500 \mathrm{~V}} \\ & u_{u}=3-90-288 \mathrm{~V} \end{aligned}$	－	－	－	－	－	－	－	\bullet	Optional 3－wire or 4－wire connection（with or without zero） allows the monitoring of the upper and lower level of voltage and frequency，further failure，sequence or asymmetry of hase incl．neutral break both output contacts can be configured individually．	100

Signal relays

Relay for frequency（f）monitoring

Technical parameters	$\begin{aligned} & \text { HRN-33/ } \\ & \text { HRN-63 } \end{aligned}$	HRN-34/ HRN-64	HRN-35	HRN-37/ HRN-67
Supply and measuring				
Terminals:	A1-A2	A1-A2	A1-A2	A1-A2
Voltage range:	$\begin{gathered} \text { AC 48-276V V } \\ (50 / 60 \mathrm{~Hz}) \end{gathered}$	DC6-30V	AC $48-276 \mathrm{~V}$ ($50 / 60 \mathrm{~Hz}$)	$\begin{gathered} \text { AC 24-150 V } \\ (50 / 60 \mathrm{~Hz}) \end{gathered}$
Burden:	${ }^{\text {Hens3 }}$ max.26VA	-	max. 45 VA max. 2 W	${ }^{\text {Hens3 }}$ max.8 8 VA
	${ }^{\text {Hencs max. } 45 \mathrm{VA}}$	-		newt max 3
	max. 2 W	max. 0.5 W		max. 2 W
Max. dissipated power (Un + terminals):	4 W	4 W	6 W	4 W

(Un + terminals: Upper level (Umax): Max. permanent overload: Peak overload <1ms: Time delay: Setting accuracy (mechanical): Repeat accuracy: Tolerance of limit values: Hysteresis (from fault to normal): Output Number of contacts:
Current rating: Breaking capacity Inrush current: Switching voltage: Output indication: Mechanical life: Electrical life (AC1): Other information Operating temperature. Storage temperature: Dielectrica strength:
Operating position: Mounting: Protection degree: Pollution degree: Max. cable size (mm^{2}):

Dimensions:
Weight:
Standards:
$\begin{gathered}\text { HRN-33/ } \\ \text { HRN-63 } \\ \end{gathered} \underset{\substack{\text { HRN-34/ } \\ \text { HRN-64 }}}{ }$ HRN-35
$\underset{\substack{\text { HRN-37/ } \\ \text { HRN-67 }}}{ }$
$-20^{\circ} \mathrm{C}$ to $55^{\circ} \mathrm{C}\left(-4^{\circ} \mathrm{F}\right.$ to $\left.131^{\circ} \mathrm{F}\right)$
$-0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}\left(-22^{\circ} \mathrm{F}\right.$ to $\left.158^{\circ} \mathrm{F}\right)$ any
n^{2}
P40 from front panel, PP20 terminals III. solid wire max. 1×2.5 or 2×1.5, with sleeve max. 1×2.5 (AWG 12)
$62 \mathrm{~g}(2.2$ oz. $) \mid 75 \mathrm{~g}(2.6$ oz. $) \mid 86 \mathrm{~g}(3$ oz. $) \mid 61 \mathrm{~g}(2.2$ oz. $)$ (2.2 oz.) $\quad 75 \mathrm{~g}(2.6$ oz.) $\quad 86 \mathrm{~g}(3$ oz) $) \quad 61 \mathrm{~g}(2$,
EN $6025-1$, en $60255-26$, EN $60255-27$
HRN-35
Adjusting of uppervalue Umax
Adjusting of delay
Adjusting of bottom value U Umin

$Q^{A 1} \quad Q^{n}$	Supplymmonitoring voltage $($ Al- -42$)$
	Indication
$\left.\begin{array}{\|c} \theta_{0} \\ 0 \end{array} \right\rvert\,$	Output contact for Umin $(25-26-28)$
	Output contact for Umax $(15-16-18)$

Connection
HRN-33
HRN-37
HRN-63
HRN-67

HRN-34
HRN-64

- It serves to control supply voltage for appliances sensitive to supp tolerance, protection of the device against under/over voltage HRN-6x is over/under voltage relay. For HRN-33, HRN-63
- monitors voltage in range AC 48 - 276 V

Umax and Umin can be monitored independently.
HRNN 34, HRN-64

- like HRN-33, but v
like HRN-33, but voltage range is DC $6-30 \mathrm{~V}$
HRN-35
- like HRN-33, but independent output relays for each voltage level
- switching of other loads possible. switching of other loads possible.
HRN-37, HRN-67
, it is possible to
independently.
Voltage Umin adjusted as \% of Umax
3 -state indication - LEDs indicating normal state and 2 fault states.

Description

HRN-3x, HRN-6x | Voltage monitoring relays in 1P - AC/DC

Function HRN-33, 34, 35,37 (band voltage relay)

HRN-33,
HRN-37

HRN-34

HRN-35

Monitoring relay series HRN-3x monitors level of voltage in single - phase circuits. Monitored voltage serves also as supply voltage. It is possible to set two indipendent (all occurrences) levels of voltage, when exceeded the
output is activated. HRN -33 and $H R N-34-$ in normal state the output relay is permanently switched. It switches off when there is a limit settings. This combination of linkage of the output relay is advantageous when the full failure of supply (monitored) voltage is considered to be a faulty state in
the same way a a a decrease of voltage within the set level. Output relay is in the same way as a decrease of voltage within the set level. Output relay is in both situation always switched of
Differently
HRN-35 version uses in
state it is switched off. If the upper level is exceeded (for example overvoltage) 1 relay switches on, when the bottom level (e.g. undervoltage) is exceeded 2 relay switches. It is thus possible to see the particular faulty
state. To eliminate short peaks in the main the time delay, which is possible to be set in range $0-10$ s, is used. It functions when changing from normal to faulty s tate and prevents unavailing pulsation of the output relay caused by parasitive peaks. Time delay doesn't apply when changing from faulty
to normal state, but hysteresis ($1-6 \%$ depends on the voltage setting) apto normal state, but hysteresis ($1-6 \%$ depends on the voltage setting) ap-
ply. Thanks to changeover contacts it is possible to get other configurations and functions according to actual requirements of the application.

Function HRN-63, 64,67 (over/under voltage relay)

HRN-63,
HRN
HRN-64,
HRT

Symbol

Indication LED

HRN-33, HRN-37		HRN-34		HRN-63, HRN-67		HRN-64	vervoltage) Un>Umax Green LED $=$ OFFRed LED $=O N$
	Normal state Umin<Un<Umax Green LED $=$ ON Red LED = OFF \qquad	\square : 0 Ouz	$\frac{\text { Normal state }}{U \min <U n<U \text { max }}$ Green LED $=$ ON Red LED $=$ OFF Red LED = OFF	Un ${ }^{\text {a }}$	$\begin{aligned} & \text { Exceeded Umax (overvoltage) } \\ & \text { Ur>Umax } \\ & \text { Geen LED }=\text { ON } \\ & \text { Red LED }=\text { ON } \end{aligned}$	$\mathrm{un}_{n} \mathrm{O}$	
		U ${ }^{2}$	Exceeded Umax (overvoltage) (undervoltage) Un>Umax or Un<Umax Green LED $=$ OFF Red LED $=0 N$	Ou>	Drop below Umin undervoltage Un<Umin Geeen LED $=0$ Red $L E D=O F F$	Ov	Drop below Umi (Lundervolage Green LED Red LED $=0$ OFF
HRN-35							
	Normal state $U \min <U n<U$ max Green LED $=$ ON Red LED $=$ OFF		Exceeded Umax (overvoltage) Un>Umax Green LED = ON Red LED $=0 N$	$\stackrel{3}{4}_{2} \mathrm{O}$	Drop below Umin (undervoltage) Un<Umin Green LED = OF RedLED = ON		

HRN-41 HRN-42

Technical parameters	HRN-41		HRN-42
Supply			
Supply terminals:	A1-A2		
Voltage range:	AC $230 \mathrm{~V}, \mathrm{AC} 400 \mathrm{~V}$ or AC/DC 24 V (AC 50/60 Hz)		
Burden max:	$5 \mathrm{VA} / 2.5 \mathrm{~W}(\mathrm{AC} 230 \mathrm{~V}, \mathrm{AC} 400 \mathrm{~V})$, $2 \mathrm{VA} / 2.5 \mathrm{~W}$ (AC/DC 24V)		
Max. dissipated power	$7 \mathrm{~W}(230 \mathrm{~V}, 400 \mathrm{~V})$,		
Supply voltage tolerance:	-15\%; 10%		
Measuring			
Ranges:*	AC/DC $10-50 \mathrm{~V}$	ACIDC 32 -160 V	AC/DC 100-500 V
	(AC 50/60 Hz)	(AC 50/60 Hz)	(AC 50/60 Hz)
Terminals:	C-B1	C. 82	C-B3
Input resistance:	$212 \mathrm{k} \Omega$	676 k ת	$2.12 \mathrm{M} \Omega$
Max. permanent overload:	100 V	300 V	600 V
Peak overload <1 ms:	250 V	700 V	1 kv
Time delay for Umax:	adjustable 0.1-10 s		
Time delay for Umin:	adjustable 0.1-10 s		

5%
$<1 \%$
Setting accuracy (mechanical): Repeat accuracy: Dependance on temperature Tolerance of limit values:
Hysteresis
(from fault to normal) Output
Number of contacts: Current rating: Breaking capacity Inrush current: Switching voltage: Output indication: Mechanical life: Electrical life (AC1): Other information Operating temperature: Storage temperature: Dielectrical strength: Mounting Proung. Overvoltage category Pollution degree: Max. cable size (

Weight:
Standards:
*Only ore ofterne

- Relay designed for monitoring DC and AC voltage in three ranges.
- The relay controls the size of the voltage in two independent levels (Umin, Umax).
- Setting the monitored level Umax (in $\%$ of range)

Setting the monitored level Umin
(in of range - for HRN-42 - function WINDOW),
(in \% of the set upper limit- for HRN-41 - function HYSTERESIS)

- Adjustable delay for eliminating short tern parallel).
level independently. - Galvanically separated power supply from monitoring inputs. - Output contact for each monitored voltage level.

Description						
Supply voltage terminals		Supply volage				
Supply indication	1					
	©					
		Adiusting upper evel Umax $^{\text {Uma }}$				
	Henal					
Indication Umax		t1- -ime deay for max $^{\text {m }}$				
Outputi idication		RESET button				
Indication Umin						
Adjusting bottom level - Umin		t2-time delay for Umin				
	-16\| 15	18	28	25	26	
	QQQQQQ					
	1-1 $)^{1}$	nt monitoring terminals				

Description and importance of DIP switches

Connection

Symbol

Function

If the value of the monitored voltage is in the zone between the set upper and lower levels, the status OK occurs - both relays are closed and the yellow LED illuminates. If the value of the monitored voltage is outside the set limits ($>\operatorname{Umax}$ or < Umin), an error state occurs.
When moving to an error state $\mathrm{U}>$ Umax, it times the delay t 1 and a red LED $>\mathrm{U}$ simultaneously flashes. After the t 1 time elapses, the red LED $>\mathrm{U}$ illuminates and the relevant relay opens.
When moving to an error state $U<U$ min, it times the delay $t 2$ and a red LED $<U$ simultaneously flashes. After the time $t 2$ elapses, the red LED $<U$ iluminates and the relevant relay opens.
-When moving from the error status to the OK status, the relevant red LED immediately goes out, and the corresponding relay closes

Technical parameters	HRN-55	HRN-55N
Monitoring terminals:	L1, L2, L3	L1, L2, L3, N
Supply terminals:	L1, L2, L3	L1, L2, L3, N
Voltage:	$3 \times 400 \mathrm{~V}(50 / 60 \mathrm{~Hz})$	$3 \times 400 \mathrm{~V} / 230 \mathrm{~V}(50 / 60 \mathrm{~Hz})$
Burden:	max. $2 \mathrm{VA} / 1 \mathrm{~W}$	
Max. dissipated power	1 w	
(Un+terminals):		
Level Umax:	125% Un	
Level Umin:	75% Un	
Hysteresis:	2\%	
Max. permanent:	AC $3 \times 460 \mathrm{~V}$	AC $3 \times 265 \mathrm{~V}$
Peak overload <1ms:	AC $3 \times 500 \mathrm{~V}$	AC $3 \times 288 \mathrm{~V}$
Time delay T1:	max. 500 ms	
Time delay T :	adjustable 0.1-10s	
Output		
Number of contacts:	1x changeover/SPDT (AgNi/Silver Alloy)	
Current rating:	$8 \mathrm{~A} / \mathrm{AC1}$	
Breaking capacity:	2000 VA/AC1, $240 \mathrm{~W} / \mathrm{DC}$	
Inrush current:	10 A	
Switching voltage:	$250 \mathrm{VAC} / 24 \mathrm{VDC}$	
Output indication:	red Led	
Mechanical life:	10.000.000 operations	
Electrical life (AC1):	100.000 operations	
Other information		
Operating temperature:	$-20^{\circ} \mathrm{C}$ to $55^{\circ} \mathrm{C}\left(-4^{\circ} \mathrm{Fto} 131{ }^{\circ} \mathrm{F}\right)$	
Storage temperature:	$-30^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}\left(-22^{\circ} \mathrm{Fto} 158{ }^{\circ} \mathrm{F}\right)$	
Electrical strength:	4 kV (supply - output)	
Operating position:	any	
Mounting:	din rail EN 60715	
Protection degree:	\|P40 from front pane//IP10 terminals	
Overvoltage category:	III.	
Pollution degree:	2	
Max. cable size (mm):	with sleeve max. 1×2.5 or 2×1.5 (AWG 12)	solid wire max. 2×2.5 or 1×4
Dimensions:	$90 \times 17.6 \times 64 \mathrm{~mm}\left(3.5^{\prime \prime} \times 0.7^{\prime \prime} \times 2.5\right)$	
Weight:	$61 \mathrm{~g}(2.15 \mathrm{oz}$)	$63 \mathrm{~g}(2.22$ oz.)
Standards:	EN 60225-1, en 60255-26, EN 60255-27	

Function description

Relay in 3 -phase main monitors correct phase sequence and failure of any phase. Green LED is permanently ON and indicates presence of power supply voltage. In case of phase failure or exceeding voltage level red LED flashes and relay breaks. When changing to faulty state, time delay applies. Time
delay setting is set by a potentiometer on front panel of the device. In case of delay setting is set by a potentiometer on front panel of the device. In case of
incorrect phase sequence red LED shines permanently and relay is open. In incorrect phase sequence red LED shines permanently and relay is open. In
case supply voltage falls below 60% Un (OFF lower level) relay immediately cosens with no delay and faulty state is indicated by red LED.
HRN-55- thanks to supply form all phases, this relay is able to stay operational
also if one phase is out. also if one phase is out.
HRN-55N-supply L1, L2, L3-N, means that relay monitor also failure in neutral wire.

- Relay monitors phase sequence and failure, exceeding of monitored
voltage in 3 -phase main. voltage in 3-phase main.
applicable also if 1 -phase fhases, which means that function of relay is
neutral point.
Fixed delay $\mathrm{T}(500 \mathrm{~ms})$ and adjustable delay $\mathrm{Tz}(0.1-10 \mathrm{~s})$.

Description

Function

Connection
HRN-55

HRN-55

Technical parameters	HRN-57	HRN-57N	Description		
Monitoring terminals:	L1, L2, L3	L1, L2, L3, N			
Supply terminals:	L1, L2, L3	L1, L2, L3, N			
Voltage:	$3 \times 400 \mathrm{~V}(50-60 \mathrm{~Hz})$	$3 \times 400 \mathrm{~V} / 230 \mathrm{~V}(50-60 \mathrm{~Hz})$			
Burden:	max. $2 \mathrm{VA} / 1 \mathrm{~W}$		$\begin{aligned} & \text { Supplymonitoring terminals } \\ & (\underline{11-12-13)} \end{aligned}$		
Max. dissipated power					
(Un+terminals):		2w	Supply indication	(2) (2)	
Level Umax:	$105-125 \%$ Un$75-95 \%$ Un			Indication	
Level Umin:					
Hysteresis:		2\%		4	
Max. permanent overload:	AC $3 \times 460 \mathrm{~V}$	AC $3 \times 265 \mathrm{~V}$	Adjusting of time delay (T2)		
Peak overload <1 ms:	AC $3 \times 500 \mathrm{~V}$	AC $3 \times 288 \mathrm{~V}$			Adjusting upper value Umax
Time delay 1 :	max. 500 ms				
Time delay T :	adjustable 0.1-10 s		Output contact (15-16-18)	${ }^{3}$	Adjusting bottom value Umin
Output					
Number of contacts:	1x changeover/SPDT (AgNi/Silver Alloy)			Q	
Current rating:	8A/AC1				
Breaking capacity:	2000 VA/AC1, $240 \mathrm{~W} / \mathrm{DC}^{\text {c }}$			15 18	

Function

Technical parameters	HRN-54	HRN-54N
Supply and measuring:	L1, L2, L3	L1, L2, L3, N
Supply terminals:	L1, L2, L3	L1, L2, L3, N
Supply/measured voltage:	$3 \times 400 \mathrm{~V}$ ($50 / 60 \mathrm{~Hz}$)	$3 \times 400 \mathrm{~V} / 230 \mathrm{~V}(50 / 60 \mathrm{~Hz})$
Burden:	max. $2 \mathrm{Va} / 1 \mathrm{w}$	
Max. dissipated power	1 w	
(Un+terminals):		
Level Umax:	105-125\% Un	
Level Umin:	$75-95 \%$ Un	
Hysteresis:	2\%	
Max. permanent overload:	AC $3 \times 460 \mathrm{~V}$	AC $3 \times 265 \mathrm{~V}$
Peak overload <1ms:	AC $3 \times 500 \mathrm{~V}$	AC $3 \times 288 \mathrm{~V}$
Time delay T1:	max. 500 ms	
Time delay T2:	adjustable 0.1-10 s	
Output		
Number of contacts:	1x changeover/SPDT (AgNi/Silver Alloy)	
Current rating:	$8 \mathrm{~A} / 4 \mathrm{C} 1$	
Breaking capacity:	2000 VA/AC1, $240 \mathrm{~W} / \mathrm{DC}$	
Inrush current:	10A	
Switching voltage:	$250 \mathrm{VAC} / 24 \mathrm{VDC}$	
Indication of state:	red LED	
Mechanical life:	10.000.000 operations	
Electrical life (AC1):	10.000 operations	
Other information		
Operating temperature:	$-20^{\circ} \mathrm{C}$ to $55^{\circ} \mathrm{C}\left(-4 \mathrm{~F}\right.$ to $\left.131{ }^{\circ} \mathrm{F}\right)$	
Storage temperatur:	$-30^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}\left(-22^{\circ} \mathrm{Fto} 158{ }^{\circ} \mathrm{F}\right)$	
Electrical strength:	4 kV (supply - output)	
Operating position:	any	
Mounting:	din rail en 60715	
Protection degree:	IP40 from front pane//P10 terminals	
Overvoltage category:	III.	
Pollution degree:	2	
Max. cable size ($m \mathrm{~m}^{2}$):	solid wire max. 2×2.5 or $1 \times 4 /$	
Dimensions:	$\left.90 \times 17.6 \times 64 \mathrm{~mm}\left(3.5^{\prime \prime} \times 0.7^{\prime \prime} \times 2.5\right)^{\prime}\right)$	
Weight:	$62 \mathrm{~g}(2.19 \mathrm{oz}$)	$63 \mathrm{~g}(2.22$ oz.)
Standards:	EN 60225-1, en 6025-26, EN 60255-27	

Function description

Relay in 3 -phase main monitors size of phase voltage. It is possible to set two independent voltage levels and thus it is possible to set two independ ent voltage levels and monitor e.g. undervoltage and overvoltage inde
pendently. In normal state when voltage is within set levels, output relay is closed and red LED shines. In case voltage exceeds or falls below the set levels, output relay opens and red LED shines (LED indicates faulty state flashes when timing).
In case supply voltage falls below 60% Un ($\mathrm{U}_{\text {off }}$ lower level) relay immedi ately opens without delay and faulty state is indicated by red LED. ately stopped. ately stopped.

It serves to monitor voltage, phase failure and sequence in switch-
boards, protection of devices in 3 -phase mains. tis posible to etuper

- Adjustable time delay eliminates short voltage peaks and failures in the main. diately opens without delay.
- HRN-54: supply from all phases which means that relay is functional also in case when one phase is faulty.
- HRN-54N: supply L1, L2, L3-N, means that relay monitors also failure of
neutral wire.

Description

Technical parameters
HRN-56

	208240400	480	575
Monitoring terminals:	L1, L2, L3		
Supply terminals:	L1, L2, L3		
Supply/measured voltage:	3×208 VLL 3×240 VLLL $3 \times 400 \mathrm{VL-L} 3 \times 480 \mathrm{VLL}$ [$3 \times 575 \mathrm{~V}$ L-L $(3 \times 120 \mathrm{VL}-\mathrm{N})(3 \times 139 \mathrm{VL}-\mathrm{N})(3 \times 230 \mathrm{VL}-\mathrm{N})(3 \times 277 \mathrm{VL}-\mathrm{N})(3 \times 332 \mathrm{~V}-\mathrm{N})$ $(50 / 60 \mathrm{~Hz})(50 / 60 \mathrm{~Hz})(50 / 60 \mathrm{~Hz})(50 / 60 \mathrm{~Hz})(50 / 60 \mathrm{~Hz})$		
Burden:	max. $2 \mathrm{VA} / 1 \mathrm{~W}$		
Max. dissipated power	2 w		
(Un+terminals):			
Level Umin:	adjustable $70-95 \%$ Un		
Level Uoff:	60% Un		
Hysteresis:	2\%		
Max. permanent overload:	AC $3 \times 276 \mathrm{~V} \quad \mathrm{AC} 3 \times 460 \mathrm{~V}$	AC 3x 550	AC 3x660V
Peak overload < 1s:	AC $3 \times 300 \mathrm{~V}$ AC $3 \times 500 \mathrm{~V}$ AC $3 \times 600 \mathrm{~V}$ AC $3 \times 700 \mathrm{~V}$		
Time delay T :	max. 500 ms		
Time delay T :	adjustable 0-10 s		
Output			
Number of contacts:	1x changeover/SPDT (AgNi/Silver Alloy)		
Current rating:	$8 \mathrm{~A} / \mathrm{AC}^{1}$		
Breaking capacity:	2000 VA/AC1, $240 \mathrm{~W} /$ DC		
Inrush current:	10 A		
Switching voltage:	$250 \mathrm{VAC/24VDC}$		
Indication of state:	red LED		
Mechanical life:	10.000.000 operations	30.000.000	operations
Electrical life (AC1):	100.000 operations		
Other information			
Operating temperature:	$-20^{\circ} \mathrm{Cto}+55^{\circ} \mathrm{C}\left(-4^{\circ} \mathrm{F}\right.$ to $\left.131{ }^{\circ} \mathrm{F}\right)$		
Storage temperature:	$-30^{\circ} \mathrm{Cto}+70^{\circ} \mathrm{C}\left(-22^{\circ} \mathrm{F}\right.$ to $\left.158{ }^{\circ} \mathrm{F}\right)$		
Dielectrical strength:	4 kV (supply - output)		
Operating position:	any		
Mounting:	DIN rail en 60715		
Protection degre:	IP40 from front panel/ IP10 terminals	IP40 from fir \|P20	ront panel/ erminals
Overvoltage category:	III.		
Pollution degree:	2		
Max. cable size (mm):	solid wire max. 2×2.5 or $1 \times 4 /$ with sleeve max. 1×2.5 or 2×1.5 (AWG 12)	max. 1×2.5, max. 2×1.5 with sleeve max. 1×1.5 (AWG 12)	
Dimensions:	$90 \times 17.6 \times 64 \mathrm{~mm}\left(3.5 \times \times .7^{\prime} \times 2.5\right)$	$90 \times 52 \times 65 \mathrm{~mm}\left(3.55^{\circ} 2^{\prime 2} \times 2.6\right)$	
Weight:	$65 \mathrm{~g}(2.30 z) 65 \mathrm{~g}(2.30 z) 66 \mathrm{~g}(2.30 z)$	$110 \mathrm{~g}(3.9 \mathrm{zz}) 110 \mathrm{~g}(3.9 \mathrm{oz})$	

Standards:

Function description

Relay in 3-phase main monitors correct phase sequence and phase failure. Green
LED illuminates LED illuminates permanently and indicates energization. In case of phase failure red delay setting is done by potentiomeneter on the to font paulty state, time delay applies delay setting is done by potentiometer on the front panel of the device. In case of incorrect phase sequence, red $L E D$ shines permanently and relay is open. In case
supply voltage falls below 60% Un (U lower level), relay immediately opens with no delay and faulty state is indicate by ref LED.
HRN-56: Thanks to supply from all phases, relay is functional also in case of one phase
failure.

- Relay monitors winding etc.).
- Relay is designated for monitoring of 3 -phase networks. . Iso in case - Supply from all phase.
of one phase failure.
- Supply and monitored supply Un:

1-MODULE
HRN-56/208
HRN-56/208-3x 208V 3-MODULE
HRN $-56 / 240-3 \times 240 \mathrm{~V}$
HRN-56/400-3×400

- Fixed time delay $\mathrm{Tl}(500 \mathrm{~ms})$ and adjustable time delay $\mathrm{T} 2(0-10 \mathrm{~s})$.

Description

Function

Connection

Symbol

HRN-43, HRN-43N | Voltage monitoring relay for complete control in 3P incl. asymmetry

Description

Supply voltage terminals (A1-A2)	$\begin{aligned} & \text { Monitoring terminals } \\ & \text { (L1-L2-L3) } \end{aligned}$	
	(1)	
		DiP switch
	(Wyo	Adjusting upper level Umax
Supply indicaion		Time delay ${ }^{\text {2 }}$
Indication overvoltage /undervoltage, failur	yow-	RESET button
Sequence indication		Asymmerty seting
Phase asymmetry indication		Adjusting bottom level
	$\left.{ }_{16}\right\|^{15}\|18\| 28\|25\| 26$	
	$Q Q Q Q Q$	Output contact (15-16-18-25-26-28)

Description and importance of DIP switches

ASYM Of	\square		Choice monitoring phase asymm
Memory OfF	\square		MEmory functio
Output 1	\square		Relay function setting
Hysteresis 5\%	\square		Hysteresis setii

Connection

Symbol
HRN-43
HRN-43N

Function

Relay is designated to monitor 3 -phase circuits. Type HRN-43N controls voltage towards neutral wire, type HRN-43 controls interphase voltage. Relay can monitor voltage in two levels overvoltage/) undervoltage), phase assymetry, sequence and failure. Each faulty state is indicated by individual LED. By DIP switch
(Output) it is possible to define function of the other relay - independent function (1x for overvoltage, 1x for undervoltage) or in paralle. Time delays t (fixed) when changing from faulty to normal state or when de-energized and $t 2$ (adjustable) when changing from normal to faulty state. These delays prevent incorrect conduct and oscillation of output device during short voltage peaks in the main or during gradual voltage decline into normal.
Voltage control
Set upper level Umax in range $138-276 \mathrm{~V}$ (or $240-480 \mathrm{~V}$ for HRN - 43) and lower level Umin in range $35-99 \%$ Umax. In case any phase passes this range, after a delay which eliminated short voltage peaks, contact opens. Output contact again switches after returning back into monitored voltage range and exceeding set delay t2.
Phase sequence
Monitors correctness of phase sequence. In case of unwanted change output contact breaks. In case of energization of a device with incorrect phase sequence, contact stays opened.
Asymmetry
individual phases is set in a range of $5-20 \%$. In case set asymmetry is exceeded, output relay breaks and LED indicating asymmetry shines. Delays 11, t 2 and hysteretic are applicable when returning to normal state. Monitoring asymmetry can be switched off by DIP switch ASYM.

HRN-100 | Multifunction voltage monitoring relay in 3P with LCD display

Technical parameters	HRN-100
Supply	
Supply and measuring terminals:	L1, L2, L3, (N)
Supply and monitored	$\mathrm{U}_{\text {LN }}=3 \sim 90-288 \mathrm{~V}$, (AC $\left.45-65 \mathrm{~Hz}\right)$
voltage:	$\mathrm{U}_{\mathrm{u}}=3 \sim 155-500 \mathrm{~V}$, (AC $45-65 \mathrm{~Hz}$)
Power consumption (max):	5 VA
Measuring circuit	
Selection of the measured	Phase voltage - 3 phase, 4 wire
circuit:	Line voltage - 3 phase, 3 wire
Adjustable upper (OV) and	Phase voltage: $90-288 \mathrm{VaC}$
lower (UV) voltage levels:	Line voltage: 155-500 VAC
Upper (HC) / lower (LC) limit	Phase voltage: $310 \mathrm{VAC} / 85 \mathrm{VAC}$
voltage:	Line voltage: $535 \mathrm{VAC} / 150 \mathrm{VA}$
Adjustable upper (OF) and	
lower (UF) frequency leve:	$45-65 \mathrm{~Hz}$
Adjustable asymmetry:	Absolute: 5-99 VaC
	Percentage: 2 -50\%
Adjustable voltage and	3 - 20 VAC ((OV, $\mathrm{VV}, \mathrm{HC}, \mathrm{LC}$)
frequency hysteresis leve:	0.5-2 Hz (OF, UF)
Adjustable hysteresis	Absolute: 3-99 vac
asymmetry:	Percentage: 2 - 15%
Accurcy of measured voltage:	+/-5V
Accuracy of measured frequency:	$+/-0.3 \mathrm{~Hz}$
Adjustable delay after supply	$0-999$ s
connection $\mathrm{P}_{\text {on }}$:	(HW initialization 250 ms)
Adjustable delay $\mathrm{Torm}^{\text {a }}$	0.5-999 s
Adjustable delay $\mathrm{T}_{\text {ofi }}$	0.1 -999 5
Fixed delay:	$<100 \mathrm{~ms}$ (phase sequence, failure)
	<200 ms (HC, LC), 500 ms (neutral fail)
Output	
Output contact:	$2 \times$ changeover (AgSnO_{2})
Rated current:	5A/AC1
Switching power:	1200VA/AC1, 150W/DC1
Switching voltage:	240V AC/30V DC
Max. output power disisipation:	5 W
Mechanical life:	10.000.000 operations
Electrical life (AC1):	100.000 operations
Other information	
Operating temperature:	-10 to $+60^{\circ} \mathrm{C}\left(14\right.$ to $\left.140^{\circ} \mathrm{F}\right)$
Storage temperature:	-20 to $+70^{\circ} \mathrm{C}\left(-4 \mathrm{to} 158{ }^{\circ} \mathrm{F}\right)$
Dielectric strength:	4 VV (supply - output)
Operating position:	any
Mounting:	DIN rail EN 60775
Protection degree:	\|P20 terminals/PP40 from front panel
Overvoltage category:	III.
Pollution degre:	2
Cable size	max. 1×2.5, max. $2 \times 1.5 /$
(mm) :	with sleeve max. 1×2.5
Dimensions:	$90 \times 36 \times 66,5 \mathrm{~mm}\left(3.6^{\prime \prime} \times 1.5^{*} \times 2.7{ }^{\prime \prime}\right)$
Weight:	$132 \mathrm{~g}(4.702$.

- 3-wire or 4 -wire connection (with or without neutral).

Optionally monitors upper and lower voltage \& frequency in 3 -phase circuits.
fail (only he de in 4 -wire connection).
Both outpe is supplied from monitored voltage.
Both output contacts can be set individually.

- Measures real effective value of AC voltage (True RMS).

Optional response delay of the output contact to the measured fault state
or transition from the fault state to the or transition from the fault state to the OK state incl. delayed response of
output contacts after connecting the power supply. output contacts after connecting the power supply.

- Optional closing or opening of the output contact when measuring a fault state (Fail Safe / Non Fail Safe).
- Password protection against unauthorized changes to settings.
- Digital backlit display with the possibility of monitoring the current state of the network, incl. possible failures.
-The last five fault states are stored in a history that can be viewed retrospectively
- Sealable transparent cover for display and controls.

Description

Description of display elements on the screen

Δ At- Duration of the faut state
$\stackrel{\Delta t}{\Delta-\text { Duration of the fault sate }}$

- After the supply/monitored voltage is connected, the delay $\mathrm{P}_{o n}$ starts timing - during the timing the out
is open. After the delay, if the monitored voltage is in the range $\mathrm{U}_{\text {min }} \ldots . \mathrm{U}_{\text {max }}$ the output contact closes Ithe monitored volta ex

- If the monitored voltage exceeds the value $\mathrm{U}_{\text {min }} \mathrm{Umin}_{\text {mireased }}$ by the set hysteresis, the time delay start to the OK state $\left(\mathrm{T}_{\mathrm{on}}\right)$. After the delay, the output contact closes. - If the duration of the fault state (Δt) is shorter than the set value ($T_{\text {off }}$, the status of the output contact does not change.

- After the supply/monitored voltage is connected, the delay P_{on} starts timing - during the timing the output contact is in a fault state - in FAIL SAFE mode it is open. After the delay, if the phase sequence is correct, the output contact closes.
If the phase sequence is incorrect after the $P_{\text {on }}$ delay, the output contact remains open (fault state)
 After the supply/monitored voltage is connected, the delay $P_{\text {o }}$ starts timing - during the timing the output contact is in
After the delay, ift the phase asymmetry is lower than the set value (absolute or percentage), the output contact closes.
If the phase asymmetry exceeds the set value, the time delay to the fault state ($T_{\text {off }}$) begins. After the delay, the output contact opens.
.
the duration of the fault state ($\Delta t)$ is shorter than the set value $\mathrm{T}_{\text {off }}$, the status of the output contact does not change.
- If a phase failure occurs, the time delay to the fault s state ($\left(T_{\text {off }}\right.$) begins. After the delay, the output contact opens.
- If the phase failure resumes, the time delay starts to OK state ($T_{o n}$). Atter the delay, the output contact closes.
- If the phase failure resumes, the time delay starts to OK state ($\mathrm{T}_{\text {on }}$). After the delay, the output contact closes.
- If the duration of the fault state ($\Delta \mathrm{t}$ i is shorter than the set value $\mathrm{T}_{\text {off }}$ the status of the output contact does not change.

Connection

Description of controls and signaling

Relay contac		
Mode	OK state	Fault state
Fail Safe	15\&25(Pole) - - - 18\&28(NO)	
Non Fail safe	15\&25 (Pole) - -o- 18\&28(NO)	158

Fault status window	
Short-cut	Meaning
"ELT.NF"	Neutral fail
"ELT.LC"	Lower threshold voltage
"ELT.HC"	Upper threshold voltage
"RLx.PL"	Phase failure
"RLx.PR"	Phase sequence
"RLX.ASY"	Phase asymmetry
"RLx.OF"	Overfrequency
"RLx.uF"	Underfrequency
"RLx.OV"	Overvoltage
"RLx.UV"	Undervoltage
Note: RLx indicate RL1 \& RL2	

Control buttons

Enter the settings menu (long press >1 s)
Return to
Return to the main screen or previous menu in edit or display
mode. Step back when chang
Move parameters up
Up $\Delta \begin{aligned} & \text { Changelincrease the value ofa parameter in edit mode. } \\ & \text { Selection of t the currently meaasured parameter } 0 \text {. }\end{aligned}$
-voltage, frequency, asymmetry (pressing the button $<500 \mathrm{mss}$.
Moving parameters down.
Down V Chango/decreasest the value of a parameter in edit mode.
Enter - $\begin{aligned} & \text { Select and save a parameter value in edit mode. } \\ & \text { Resetting the product from memory mode (long press }>1 \mathrm{~s} \text {). }\end{aligned}$
Escape
Enter

- Press a key combination to display the read-only

Technical parameters	MPS-1
Supply voltage:	AC $3 \times 400 / 230 \mathrm{~V}$ ($50 / 60 \mathrm{~Hz}$)
Supply voltage tolerance:	+20\%,-75\%
Power consumption:	max. 1 VA/0.5 W
Indication	
LED not illuminated:	0 to $50 \mathrm{~V} / 45$ to 0 V
LED illuminated	
yellow:	50 to $207 \mathrm{~V} / 195.5$ to 45 V
green:	207 to $264.5 \mathrm{~V} / 253$ to 199.5 V
red:	264.5 to $276 \mathrm{~V} / 276$ to 253 V
Other information	
Design:	1 MODULE
Mounting:	DIN rail EN60715
Operating position:	any
Coverage:	panel IP40, terminals IP10
Overvoltage category:	III.
Contamination level:	2
Max. cable size ($\mathrm{mm}{ }^{2}$):	solid wire max. 2×2.5 or 1x $4 /$ with sleeve max. 1×2.5 or 2×1.5 (AWG 12)
Working temperature:	$-20^{\circ} \mathrm{C}$ to $55^{\circ} \mathrm{C}\left(-4{ }^{\circ} \mathrm{Fto} 1311^{\circ} \mathrm{F}\right)$
Storage temperature:	$-30^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}\left(-22^{\circ} \mathrm{Fto} 1588^{\circ} \mathrm{F}\right)$
Dimensions:	$90 \times 17.6 \times 64 \mathrm{~mm}\left(3.5^{\prime \prime} \times 0.7^{\prime \prime} \times 2.5\right)^{\prime}$
Weight:	48 g (1.7 oz.)
Standards:	EN 60947-1, EN 60947-5-1

- Used for optical signaling of the voltage level in 3 -phases.

Each phase features LED signaling broken is divided by color into voltage levels:

- voltage in tolerance
- overvoltage - red
- undervoltage - yello
undervoltage - yellow
voltage $<50 \mathrm{~V}$ - LED not illuminated.
4-wire connection - $\mathrm{L} 1, \mathrm{~L} 2, \mathrm{~L} 3, \mathrm{~N}$.
- Monitors phase voltages against neutral wire.
- Not dependent upon order of phases.

Description of device

Terminal (L1)

Function

After connecting the supply voltage, the LED illuminates - the color corresponds to the voltage size of individual phases. If the phase voltage dr
under 40 V (phase outage), the corresponding LED is not illuminated.

Connection

COS-2

Technical parameters	COS-2
Supply	
Supply terminals:	A1-A2
Voltage range:	AC $230 \mathrm{~V}, \mathrm{AC} 110 \mathrm{~V}, \mathrm{AC} 400 \mathrm{~V}$ or AC/DC 24 V (AC $50 / 60 \mathrm{~Hz}$)
Burden max:	$2.5 \mathrm{~W} / 5 \mathrm{VA}(\mathrm{AC} 110 \mathrm{~V}, \mathrm{AC} 230 \mathrm{~V}, \mathrm{AC} 400 \mathrm{~V}$), $1.4 \mathrm{~W} / 2 \mathrm{VA}$ (AC/DC 24 V)
Max. dissipated power	
(Un+terminals:	4 w
Operating range:	-15\%; 10%
Measuring	
Voltage set:	$3 \times 400 \mathrm{~V} / 230 \mathrm{~V}(50 / 60 \mathrm{~Hz})$
Terminals:	L1, L2, L3, B1
Upper level cos-¢:	adjustable 0.1-0.99
Bottom level cos-q:	adjustable 0.1-0.99
Max. permanent voltage:	(input L1, L2, L3) AC $3 \times 460 \mathrm{~V}$
Current range:	0.1-16 A
Current overloading:	20 A (<3 sec.)
Hysteresis:	adjustable 5% or 10%
Time delay t :	adjustable $0.1-10$ s
Time delay t2:	adjustable 0.1-10s
Accuracy	
Accuracy setting (mechanical):	5\%
Accuracy of repetition:	<1\%
Temperature dependance:	<0.1\% $\%$ / ${ }^{\text {(}}$ FF)
Limit values tolerance:	5\%
Output	
Number of contacts:	2x changeover/SPDT (AgNi/Silver Alloy)
Curent rating:	$16 \mathrm{~A} / \mathrm{A}^{1}$
Breaking capacity:	$4000 \mathrm{VA/AC1}, 384 \mathrm{~W} / \mathrm{DC}$
Inrush current:	$20 \mathrm{~A} /<3 \mathrm{~s}$
Switching voltage:	$250 \mathrm{VAC} / 24 \mathrm{VDC}$
Output indication:	yellow LED
Mechanical life:	30.000 .000 operations
Electrical life (AC1):	70.000 operations
Other information	
Operating temperature:	$-20^{\circ} \mathrm{C}$ to $55^{\circ} \mathrm{C}\left(-4{ }^{\circ} \mathrm{Fto} 131{ }^{\circ} \mathrm{F}\right)$
Storage temperatur:	$-30^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}\left(-22^{\circ} \mathrm{F}\right.$ to $\left.158{ }^{\circ} \mathrm{F}\right)$
Dielectrical strength:	4 kV (supply -output)
Operating position:	any
Mounting:	din rail en 60715
Protection degree:	IP40 from front pane//P20 terminals
Overvoltage category:	III.
Pollution degre:	2
Max. cable size (mm):	max. 1×2.5, max. $2 \times 1.5 /$ with sleeve max. 1×1.5 (AWG 12
Dimensions:	$90 \times 52 \times 65 \mathrm{~mm}\left(3.5^{\prime \prime} \times 2^{\prime \prime} \times 2.6\right)^{\prime}$
Weight:	$243 \mathrm{~g} / 8.6$ oz (230 V, $110 \mathrm{~V}, 400 \mathrm{~V}$); $141 \mathrm{~g} / 5 \mathrm{oz}(24 \mathrm{~V})$
Standards:	En 60255-1, EN 60225-26, EN 625-27

Relay monitors phase shift between current and voltage in 3 -phase or
1-phase networks - evaluates $\operatorname{COS} \varphi$ (replacement COS-1) .

- Relay is designed for $3 \times 400 / 230 \mathrm{~V}$ circuits.
-Galvanically isolated power supply AC $230 \mathrm{~V}, \mathrm{AC} 110 \mathrm{~V}, \mathrm{AC} 400 \mathrm{~V}$ or AC/DC 24 V .
- Adjustable upper and lower level $\operatorname{COS} \varphi$.
- Possibility to extend the current range using a current transformer. - Two output relays (for each level independent). Adjustable delay eliminating engine start-up.

Description

Supply voltage eerminals
$($ 11-A2
Terminals monitor voltage and curent

QबOQ		
$\mathrm{Al}_{1} \mathrm{~A} 2\|\mathrm{~B} 1\| \mathrm{L} \mid$ \| L2	L3	
	$\begin{array}{r} \text { COS top } \\ \text { level setting } \varphi \text { max } \end{array}$	
	Time delay t 1	
	RESET butto	
	Time delay	
	$\begin{array}{r} \text { Setting COS } \\ \text { lower level } \varphi \text { min } \end{array}$	
Q\|OQS		
K , k k	Output contact (15-16-18-25-26-28)	

Description and importance of DIP switches

RESET OfF	\square	ON	Enable reset by buton
Memory OfF	\square	on	Memory error state
Output 1	\square	2	Relay function setting
Hysteresis 5\%	\square	10\%	Hysteresis seting

Connection
Connection with
current transformer
1-phase connection

Symbol

Status after switching on power, two relay mode

After powering on, the device sets the delay time t 1 and yellow LED flashes. Both relays are switched on. The delay serves to eliminate a faulty state when starting the motor. After the time delay t 1 begins monitoring $\operatorname{Cos} \varphi$ only.
If the $\operatorname{COS} \varphi$ is in the band between the upper and lower limits set, both relays are switched on and the yellow LED is on,
f the $\operatorname{COS} \varphi$ is outside the set limits ($>\operatorname{COS} \varphi$ max or $<\operatorname{COS} \varphi$ min), an error condition occurs - the time $t 2$ is delayed while the red LED corresponding to the $\cos \varphi$ blinks at the same time. After the time delay t2 red LED lights and the corresponding relay remains off.
When the $\operatorname{COS} \varphi$ returns to set limits, the time $t 1$ is delayed and the yellow LED flashes at the same time as the corresponding red LED. After the time delay stops blinking yellow LED, the corresponding red LED turns off and the relay switches on.

At low wattage (<100 mA) or with a power failure, an error is reported by the simultaneous blinking of both red LEDs. After resuming the voltage or the current being watched, the relay returns to the normal state where the $\cos \varphi$ value is monitored.

When the memory is turned off (DIP switch 2 OFF) and the allowable reset (DIP switch 1 ON), the pressing state is reached after the power is turned on, i.e. Washing yellow LED, both relays are switched on, with time delay t 1.
When the memory (DIP switch 2 ON) is in an error state (high or low value $\cos \varphi$) it should be reset (by pressing the RESET button).

Technical parameters	HRF-10
Supply and monitoring terminals:	L,N
Supply voltage:	161-500 V
Rated frequency fn :	(50/60/400 Hz)
Burden (max):	$1.7 \mathrm{VA} / 1.1 \mathrm{w}$
Max. dissipated power (Un + terminals):	2w
Overload capacity continuous: - max. 10 s:	$\begin{aligned} & 500 \mathrm{~V} \\ & 550 \mathrm{~V} \end{aligned}$
Frequency Fmax:	adjustable $80-120 \% \mathrm{Fn}$
Frequency Fmin:	adjustable $80-120 \% \mathrm{Fn}$
Difference:	adjustable $0.5-5 \%$ Fn
Delay (until failure):	adjustable $0.5-10 \mathrm{~s}$
Opening level (Uopen):	161 V
Output relay - contact:	$2 \times$ changeover/SPDT (AgNi) gilded
AC contact capacity:	$250 \mathrm{~V} / 8 \mathrm{~A}$, max. 2000 VA
DC contact capacity:	$30 \mathrm{~V} / 8 \mathrm{~A}$
Mechanical life:	30.000.000 operations
Other information	
Operational temperature:	$-20^{\circ} \mathrm{Cto} 55^{\circ} \mathrm{C}\left(-4 \mathrm{~F}\right.$ to $\left.131{ }^{\circ} \mathrm{F}\right)$
Storing temperature:	$-30^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}\left(-22^{\circ} \mathrm{F}\right.$ to $\left.158{ }^{\circ} \mathrm{F}\right)$
Dielectrical strenght	
(supply - relay contact):	$4 \mathrm{kV} / 1 \mathrm{~min}$.
Protection degree:	III.
Overvitage category:	2
Pollution degree:	\|P40 from font pane///P20 terminals
Profile of connecting wires (mm):	max. $2 \times 1.5 / 1 \times 2.5$ (AWG 12)
Dimensions:	$90 \times 52 \times 64 \mathrm{~mm}\left(3.5^{\prime \prime} \times 2^{\prime \prime} \times 2.6{ }^{\text {c }}\right.$
Weight:	127 g (4.5 oz.)
Standards:	en 61000-6-2, EN $61000-6-4$, , EN 60255-1, EN $60255-26$, EN 60255-27

\section*{Connection

Rated frequency setting
-The relay serves to monitor frequency of AC voltage, e.g. in photovoltaic tions, generators.
The monitored frequency $50 / 60 / 400 \mathrm{~Hz}$ is selected by a switch - Two adjustable levels of frequency (Fmin, Fmax) in the range of $80-120 \%$ Fn.
Adjuste difference lev

- Adjustable delay level.

Device description

Functions

After the supply (monitored) voltage is connected, the green LED is on If the value of the monitored frequency falls within the range between the two set levels Fmin - Fmax no red LED is on. The relay UNDER is trig-
gered (contacts $15-16-18$) and the relay OVER is disconnected (contacts ${ }_{2} 25-26-28$).
If the monitored frequency exceeds the set level Fmax, the relay OVER is triggered after the set delay timing elapses and the red LED OVER goes on. The red LED flashes during the timing.
If the monitored frequency drops below Fmax - difference, the relay is acIf the monitored frequency drops below the set level Fmin, the relay UNDER is disconnected after the set delay timing elapses and the red LED UNDER goes on. The red LED flashes during the timing. If the monitored frequency exceeds the level Fmin + the difference, the relay is triggered without delay and the red LED UNDER goes off.
If the monitored voltage is lower than the opening level Uopen both the relays are disconnected and both the red LED (UNDER and OVER) start lashing slowly - indicating insufficient supply voltage.

AC

AC/DC

Relay for current monitor

EAN code PRI-32. 8595188121965	
Technical parameters	PRI-32
Supply circuit	
Supply terminals:	A1-A2
Voltage range:	AC $24-240 \mathrm{~V}, \mathrm{DC} 24 \mathrm{~V}$ ($\mathrm{AC} 50 / 60 \mathrm{~Hz}$)
Burden:	max. 1.5 V V/1 W
Max. dissipated power	
(Un+terminals:	2w
Operating range:	-15%; 10%
Measuring circuit	
Currentrange:	1-20 A (AC 50/60 Hz)
Current adjustment:	potentiometer
Accuracy	
Setting accuracy (mech.):	5\%
Repeat accuracy:	$<1 \%$
Temperature dependancy:	$<0.1 \% /{ }^{\prime} \mathrm{C}(\mathrm{F})$
Limit values tolerance:	5\%
Overload capacity:	max. $100 \mathrm{~A} / 10 \mathrm{~s}$
Output	
Number of contacts:	1x changeover/SPDT (AgNi/Silver Alloy)
Current rating:	8A/AC1
Breaking capacity:	2000 VA/AC1, $240 \mathrm{~W} / \mathrm{DC}$
Output indication:	red LED
Other information	
Operating temperature:	$-20^{\circ} \mathrm{C}$ to $55^{\circ} \mathrm{C}\left(-4^{\circ} \mathrm{Fto} 131{ }^{\circ} \mathrm{F}\right)$
Storage temperature:	$-30^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}\left(-22^{\circ} \mathrm{F}\right.$ to $\left.158{ }^{\circ} \mathrm{F}\right)$
Dielectrical strength:	4 kV (supply - output)
Operating position:	any
Mounting:	din rail En 60715
Protection degree:	IP40 from front pane//P10 terminals
Overvoltage category:	III.
Pollution degree:	2
Max. cable size ($m m^{2}$):	solid wire max. 2×2.5 or 1×4, with sleeve max. 1×2.5 or 2×1.5 (AWG 12)
Dimensions:	$90 \times 17.6 \times 80.5 \mathrm{~mm}\left(3.5^{\prime \prime} \times 0.7^{\prime \prime} \times 3.2\right)^{2}$
Weight:	$75 \mathrm{~g}(2.6 \mathrm{oz}$)
Standards:	EN 60255-1, , $600255-26$, en 60025-27

Symbol

Current transformer is a part of the product. Inside this transformer
there is a wire which senses the volume of flowing current. there is a wire which senses the volume of flowing current. - his construction reduces thermal stress of product when compared
with conventional solutions with inbuilt shunt, and increases current With conventional solutions with inbuilt shunt, and increases curr.
range up to 20 Amps, and galvanically separates monitored circuit. - For heating bars in sliding rails, heating cables, indication of current
flow, controlling of 1 -phase motor consumption flow, controlling of 1 -phase motor consumption,...

- Supply is galvanically separated from measuring current.
- Current exceeding - current flowing through monitored wire must not exceed 100 A .

Description

Function

Monitoring relay PRI-32 serves to monitor current level in single phase AC circuits. Due to its fluent adjustment of release current, it is predestined for applications with necessity of current flow indication, and can be used
as precedence relay. Output relay is off in normal state. In case the set curas precedence relay. Output reay is off in normal state. In case the set cur-
rent level is exceeded, it switches. Multivoltage supply is an advantage.

Connection

Technical parameters	PRI-50
Supply	
Supply terminals:	A1 - A2
Voltage range:	AC/DC $24-240 \mathrm{~V}$ ($\mathrm{ACC} 45 / 65 \mathrm{~Hz}$)
Burden:	max. 3 Va/ 1.2 W
Max. dissipated power	
(Un+terminals:	2w
Supply voltage tolerance:	$\pm 10 \%$
Measuring circuit	
Load:	between B1-B2
Currentrange:	AC 2-6A
Max. permanent current:	10 A
Inrush overload < 3 s:	50 A
Current adjustment:	potentiometer
Time delay:	adjustable, $0.5-10$ s
Accuracy	
Setting accuracy (mechanical):	5\%
Limit values tolerance:	2.5\%
Hysteresis (fault to OK):	1\%
Output	
Number of contacts:	1x changeover/SPDT (AgNi/Siver Alloy)
Current rating:	$8 \mathrm{~A} / 4 \mathrm{C} 1$
Breaking capacity:	2000 VA/AC1, $240 \mathrm{~W} / \mathrm{DC}$
Output indication:	red LED
Other information	
Operating temperature:	$-20^{\circ} \mathrm{C}$ to $55^{\circ} \mathrm{C}\left(-4{ }^{\circ} \mathrm{Fto} 131{ }^{\circ} \mathrm{F}\right)$
Storage temperature:	$-30^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}\left(-22^{\circ} \mathrm{F}\right.$ to $\left.1588^{\circ} \mathrm{F}\right)$
Dielectrical strength:	4 kV (supply - output)
Operating position:	any
Mounting:	din rail EN 60715
Protection degree:	\|P40 from front panel/IP10 terminals
Overvoltage cathegory:	III.
Pollution degree:	2
Max. cable size (mm):	solid wire max. 2×2.5 or $1 \times 4 /$ with sleeve max. 1×2.5 or 2×1.5 (AWG 12)
Dimensions:	$90 \times 17.6 \times 64 \mathrm{~mm}\left(3.5^{\prime \prime} \times 0.77^{\prime \prime} \times 2.5\right)$
Weight:	70 g (2.5 oz.)
Standards:	EN 60255-1, EN 60225-26, EN 625-27

- It is used, for example, to monitor the operation of pumps, interruptions
of radiators or lighting.
- Continuous setting of tripping current by potentiometer from 2 to $6 \mathrm{~A} C$ - Monitors the decrease in current magnitude below the level of Imin .
- Adjustable delay 0.5-10 (eliminate short current peaks, on of short...),
- Possible to use for scanning of current from current transformer.
- Power supply galvanically separated from the monitored current circuit.

Description

Suply voltage terminals
(A1-A2)

Function

When the supply voltage is connected, the green LED lights up. If the magnitude of the monitored current is higher than the set level I Imin, the relay is closed and the red LED is not lit. If the magnitude of the monitored current falls below the Imin level, the relay opens after the set delay has elapsed
and the red LED lights up. The red LED flashes during the delay. If the magnitude and the red LED lights up. The red LED flashes during the delay. If the magnitude
of the monitored current returns above the level of Imin + hysteresis, the relay of the monitored current returns above the lev.
closes without delay and the red LED goes out.

Connection
Example Connection:
PR1-50 with current transformer for current range increase.

PRI-51

Supply circuit	
Supply terminals:	A1 - A2
Voltage range:	AC 24-240 Vand DC 24 V ((AC 50/60 Hz)
Burden:	max. 25 VA1. 6 W
Max. dissipated power	
(Un + terminals):	2.5 W
Supply voltage tolerance:	$-15 \% ;+10 \%$
Measuring circuit	
Load:	between B1-B2
Currentrange:	PRL51/0.5:AC $0.05-0.5 \mathrm{~A}$ PRR-51/8A:AC 0.8 .8 A
	PRL51/5A*:AC $0.5-5 \mathrm{~A}$ (AC50/60 Hz)
	PR-51/0.5 A: 2 A

Max. permanent current:	 PRI-51/5 A, PRI-51/8 A, PRI-51/16 A: 17 A
Inrush overload <1 ms:	50 A
Current adjustment:	potentiometer
Time delay:	adjustable $0.5-10$ s
Accuracy	
Setting accuracy (mechanical):	5\%
Repeat accuracy:	<1\%
Temperature dependancy:	<0.1\% \% ${ }^{\circ} \mathrm{C}$ (${ }^{\text {F }}$)
Limit values tolerance:	5% (10\% for 0.05-0.5 A and 0.1-10 A range)
Hysteresis (fault to OK):	5\%
Output	
Number of contacts:	1x changeover/SPDT (AgNi/Silver Alloy)
Current rating:	$8 \mathrm{~A} / 4 \mathrm{Cl} 1$
Breaking capacity:	2000 VA/AC1, 240 W/DC
Output indication:	red LED
Other information	
Operating temperature:	$-20^{\circ} \mathrm{C}$ to $55^{\circ} \mathrm{C}\left(-4{ }^{\circ} \mathrm{Fto} 1311^{\circ} \mathrm{F}\right)$
Storage temperature:	$-30^{\circ} \mathrm{Cto} 70^{\circ} \mathrm{C}\left(-22^{\circ} \mathrm{Fto} 158{ }^{\circ} \mathrm{F}\right)$
Dielectrical strength:	4 kV (supply - output)
Operating position:	any
Mounting:	DIN rail EN 60715
Protection degree:	IP40 from front pane/IP10 terminals
Overvoltage cathegory:	III.
Pollution degree:	2
Max. cable size (mm):	solid wire max. 2×2.5 or 1×4, with sleeve max. 1×2.5 or 2×1.5 (AWG 12)
Dimensions:	$90 \times 17.6 \times 64 \mathrm{~mm}\left(3.5^{\circ} \times 0.7^{\prime \prime} \times 2.5\right)$
Weight:	$72 \mathrm{~g}(2.5 \mathrm{z}$.
Standards:	EN 60255-1, EN 60255-26, EN 60255-27

applicable also for current transformer

- It serves for monitoring of heating in rail-switches, heating cables, consumption of 1 -phase motors, indicates current flow. - Flexible adjustment by potentiometer

Adjustable delay $0.5-10$ s to e eliminate short current peaks.
It is possible to use for current scanning from current transformer - It is ossible to use for current scanning from current transformer.

- Supply is galvanically separated from measured current, it must be in the
same phase.

Function

Monitoring relay PRI-51 serves to monitor current level in one-phase AC circuits. Gradual setting of actuating current of monitoring relay enables many different applications. Output relay is in normal state opened. After the set current level is reached, relay closes after the set delay $(0.5-10 \mathrm{~s})$.
When returning from faulty to normal state there is a hystersis $(5 \%$). MultiWhen returning from faulty to normal state there is a hystersis (5%). Multi-
voltage of this relay is an advantage. It is possible to monitor load which voltage of his relay is an advantage. It is possible to mo
doenn't have the same supply as monitoring relay PRI-51.
Range of PRI-51 can be increased by an external current transformer.

Connection

Symbo
\square

Output	
Number of contacts:	1x changeover/SPDT (AgNi/Silver Alloy)
Current rating:	$8 \mathrm{~A} / \mathrm{ACl}^{1}$
Breaking capacity:	2000 VA/AC1, $240 \mathrm{~W} / \mathrm{DC}$
Output indication:	red Led
Other information	
Operating temperature:	-20 to $55^{\circ} \mathrm{C}\left(-4 \mathrm{C}^{\circ} \mathrm{Ftol} 131{ }^{\circ} \mathrm{F}\right)$
Storage temperatur:	-30 to $70^{\circ} \mathrm{C}\left(-22^{\circ} \mathrm{F}\right.$ to $\left.158{ }^{\circ} \mathrm{F}\right)$
Dielectrical strengh:	4 kV (supply - output)
Operating position:	any
Mounting:	din rail En 60715
Protection degree:	IP40 from front pane//P10 terminals
Overvoltage category:	III.
Pollution degree:	2
Max. cable size (mm):	max. 2×2.5, max. $1 \times 4 /$ with sleeve max. 1×2.5, max. 2×1.5 (AWG 12)
Dimensions:	$90 \times 17.6 \times 64 \mathrm{~mm}\left(3.5^{\circ} \times 0.7^{\prime \prime} \times 2.5\right)$
Weight:	$65 \mathrm{~g}(2.3$ oz.)
Standards:	EN 60255-1, en 60255-26, EN 60255-27

Connection

- Relay is designated fo
istant device diagnostic (short circuit, take-off increasing)
preferred (priority) relay - two appliances (boiler and floor heating) operating on one phase, but never run together - prevention against cur-
breaker expenses circuit breaker tripping. Enables to save your main
current tranzit indicator - informs about heating activation, ceramic changing over of appliances according to inverter's (converter) output by photocell applications.
Hole for threaded conductor passes through the body of device
- Part of device is current transformer, which is sensing size of current in threaded conductor
Possible to use also for sensing of current from external current transSlight setting (by potentiometer) of tripping current - range AC 0.5 to 25 A .

Description
$\left.\begin{array}{c}\text { Supply teminals } \\ \text { (Al-A2) }\end{array}\right)$

Functions

Monitoring relay PR1-52 serves for monitoring of current level in 1-phase AC circuits. Slight setting of release current level designates this relay for
many various applications. Output relay is in normal status switched off. many various applications. Output relay is in normal status switched off.
When set current level is overrun, relay get closed after preset delay. By return from error to normal status is used hysteresis. PRI-52 range is possible to increase with external current transformer. Adventage of PRR-52 is that the hole for threaded conductor is located under the level of covering in the switchboard - thanks that, threaded conductor is not accessible for unwanted manipulation.

Symbol

Technical parameters	PRI-53/1	PRI-53/5
Supply terminals:	Al^{1} A2	
Current monitoring terminals 1st phase: 2nd phase: 3rd phase:		
Supply voltage:	24-240V AC/DC	
Tolerance of voltage range:	$\pm 10 \%$	
Operating AC frequency:	(45/65 Hz)	
Burden (max):	3 VA 1.2 W	
Max. dissipated power (Un + terminals):	2.5 W	
Rated current In :	AC 1 A	AC5A
Current level-1:	adjustable $40-120 \%$ In	
Overload capacity Continuous: Max. 3s:	$\begin{array}{r} 2 \mathrm{~A} \\ 20 \mathrm{~A} \end{array}$	$\begin{aligned} & 10 \mathrm{~A} \\ & 50 \mathrm{~A} \end{aligned}$
Difference:	fix 1% in	
Delay (until failure):	adjustable $0.5-10 \mathrm{~s}$	
Output relay - contact:	$2 \times$ changeover/SPDT (AgNi) gilded	
AC contact capacity:	$250 \mathrm{~V} / 8 \mathrm{~A}$, max. 2000 VA	
DC contact capacity:	$30 \mathrm{~V} / 8 \mathrm{~A}$	
Mechanical life:	3.000.000at rated load	
Other information		
Operating temperature:	$-20^{\circ} \mathrm{C}$ to $55^{\circ} \mathrm{C}\left(-4{ }^{\circ} \mathrm{Fto} 1311^{\circ} \mathrm{F}\right)$	
Storing temperature:	$-30^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}\left(-22^{\circ} \mathrm{F}\right.$ to $\left.158^{\circ} \mathrm{F}\right)$	
Dielectrical strength	$4 \mathrm{kV} / 1 \mathrm{~min}$.	
(power supply - relay contact):		
Overvoltage category:	III.	
Pollution leve:	2	
Protection degree:	\|P40 from font pane/IP22 terminal	
Max. cable size (mm):	max. $2 \times 1.5 / 1 \times 2.5$ (AWG 12)	
Dimensions:	$90 \times 105 \times 64 \mathrm{~mm}\left(3.55^{\prime \prime} \times 4.11^{14} \times 2.5^{\prime \prime}\right)$	
Weight:	213 g (7. oz.)	
Standards:	EN 60255-1, EN 60255-26, EN 60255-27	
Connection		
$\underset{\sim}{N}$		

Example of connection: Example of connection
PRI - 53 with a current
conversion transformer conversion transformer
for increasing the furrent range.

- It is intended for monitoring the current in 3 -phase devices (e.g. cranes, motors, etc.).
$24-240 \mathrm{VAC/DC}$ power supply, galvanically separated from the circuit
- Adjustable delay level (when exceeding the preset limit).

Adjustable function:

- UNDER - monitors the drop in the strength of current below the pre-
set value (I) set value (I)
- OVER- excee
2 types depending on the strength of rated current $\ln (1$ A , 5 A
- Option of connecting via the current transformers to increase the value of the monitored current.

Description

Supply voltage termin (A1-A2)		Current monitoring terminals	
Supply voltage indication			
	$\left\|A_{1}\right\| A_{2} \mid$	$\|11\| 12\|\quad\| 13\|14\|$	
Indication of exceeding the preset limit	-0.		Delay
Current level seting		zaxa	
UNDER/OVER			
		$\|15\|_{16} \mid$	
	सबखाबत	बबलखात	

Functions

After the supply voltage is connected the green LED is on. UNDER function:
If the strength of the monitored current in all phases exceeds the preset level I, the relay is triggered and the red LED is off. If the strength of the
monitored current drops in any phase below the level I, the relay is disconnected after the presest delay timinge elapses and the red LED goes on. The red LED flashes during the delay.
If the strength of the monitored current returns above the level I +diffeence, the relay is triggered without delay and the red LED goes off.
OVER function:
If the strength of the monitored current is lower in all phases than the pre-
set level I, the relay is disconnected and the red LED is off If the strength of the monitored current exceeds in any phase the level I, the relay is triggered after the preset delay timing elapses and the red LED goes on. The red LED flashes during the delay. If the strength of the monitored current again drops below the level I - dif
ference, the relay is disconnected without delay and the red LED goes off.

ตoo

Technical parameters	PRI-41		PRI-42
Supply circuit			
Supply terminals:	A1-A2		
Voltage range:	AC $110 \mathrm{~V}, \mathrm{AC} 230 \mathrm{~V}, \mathrm{AC} 400 \mathrm{~V}$ or AC/DC 24 V (AC 50/60 Hz)		
Burden max:	$2.5 \mathrm{~W} / 5 \mathrm{VA}(\mathrm{AC} 110 \mathrm{~V}, \mathrm{AC} 230 \mathrm{~V}, \mathrm{AC} 400 \mathrm{~V})$, $1.4 \mathrm{~W} / 2 \mathrm{VA}$ (AC/DC 24 V)		
Max. dissipated power	$5.5 \mathrm{~W}(110 \mathrm{~V}, 230 \mathrm{~V}, 400 \mathrm{~V})$		
(Un+terminals):	4.5 W (24V)		
Operating range:	-15%; 10%		
Measuring circuit			
Ranges:*	AC/DC 3.2-16 A	AC/DC 1-5A	AC/DC $0.32-1.6 \mathrm{~A}$
	(AC 50/60 Hz)	(AC 50/60 Hz)	(AC 50/60 Hz)
Terminals:	C-B1	C-B2	C-B3
Input resistance:	$2.3 \mathrm{~m} \Omega$	$11 \mathrm{~m} \Omega$	$23 \mathrm{~m} \Omega$
Max. permanent current:	16 A	8 A	3 A
Inrush overload <1ms:	20 A	16 A	6 A
Time delay for Imax:	adjustable 0.1-10 s		
Time delay for Imin:	adjustable 0.1-10s		
Accuracy			
Measuring accuracy:	5\%		
Repeat accuracy:	<1\%		
Temperature dependancy:	<0.1\% $\%$ / ${ }^{\text {C }}$		
Limit values tolerance:	5\%		
Hysteresis (fault to OK):	selectable $5 \% / 10 \%$ from range		
Output			
Number of contacts:	$2 \times$ changeover/SPDT (AgNi/Silver Alloy)		
Current rating:	$16 \mathrm{~A} / \mathrm{AC1}$		
Breaking capacity:	$4000 \mathrm{VA/AC1}, 384 \mathrm{~W} / \mathrm{DC}$		
Inrush current:	$30 \mathrm{~A} /<3 \mathrm{~s}$		
Switching voltage:	$250 \mathrm{VAC} / 24 \mathrm{VDC}$		
Output indication:	yellow LED		
Mechanical life:	30.000 .000 operations		
Electrical life (AC1):	70.000 operations		
Other information			
Operating temperature:	$-20^{\circ} \mathrm{C}$ to $55^{\circ} \mathrm{C}\left(-4{ }^{\circ} \mathrm{Fto} 1311^{\circ} \mathrm{F}\right)$		
Storage temperature:	$-30^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}\left(-22^{\circ} \mathrm{F}\right.$ to 158 ${ }^{\circ} \mathrm{F}$)		
Dielectrical strength:	4 kV (supply -output)		
Operating position:	any		
Mounting:	din rail en 60715		
Protection degree:	IP40 from front pane//P20 terminals		
Overvoltage category:	III.		
Pollution degree:	2		
Max. cable size (mm):	solid wire max. 1×2.5 or $2 \times 1.5 /$ with sleeve max. 1×1.5 (AWG 12)		
Dimensions:	$90 \times 52 \times 65 \mathrm{~mm}\left(3.5^{\prime \prime} \times 2^{\prime \prime} \times 2.6\right)^{\prime}$		
Weight:	$248 \mathrm{~g}(8.7 \mathrm{oz})(110 \mathrm{~V}, 230 \mathrm{~V}, 400 \mathrm{~V} ; 14 \mathrm{fg}$ (5.1 loz) (24V)		
Standards:	EN 60255-1, EN 60255-26, EN 60255-27		

EN 602

* Only one of the inputs can be connected.

Used to monitor overloadingrelief (machine motor, etc) check co sumption, diagnostics on a remote device (burning, short circuit, in creased current draw, etc.)

- Relay designed for monitoring DC and AC currents in three ranges. - Setting the monitored level Imax (in \% of range). Setting the monitored level Imin.
(in $\%$ of range - for PRI-42 - function WINDOW),
(in $\%$ of the set upper limit - Pr PRL 41 -
(in \% of the set upper limit - for PRI-41- function HYSTERESIS. - Function of second relay (independently/in parallel).
- Adjustable delay for eliminating short-term outages and surges for eve ry level independently.
- Galvanically separated power supply from monitoring inputs. - Output contact: for each current level.

Description

Supply voltage terminals (A1-A2)			Current monitoring terminals (C-B1-B2-B3)
Supply indication			DIP swich
		国:	ofs
Indication I max			Adjusting upper level - Imax
Outputi idication			$\mathrm{t1}$-time delay for max
Indication Imin			Button Resei
			12-time delay for 1 min
Output contact (15-16-18-25-26-28)		(161151.812812713	$\begin{aligned} & \text { Adjusting bottom } \\ & \text { level - Imin } \end{aligned}$
		$00^{0} 0^{\circ}$	
Description and importance of DIP switches			
ac/dc Ac	\square		Measured AC/DC voltage
Memory OfF	\square	on	Memory error state
Output 1	\square		Relay function setting
Hysteresis 5\%	\square	10\%	Hysteresis seting

ค7
Symbol

Level sets

Cable，wire

Dosv－ 0 ，
page 127

Type	$\begin{aligned} & \frac{5}{0} \\ & \frac{\Delta}{\Delta} \end{aligned}$		Secure variables		Settings			Description	蝺
			竒突	旁耍	旁				
HRH－5	${ }^{1-M}$	$\begin{gathered} \text { ACIDC } \\ 24240 \mathrm{~V} \end{gathered}$	－	－	－	－	－	Measuring the frequency of 10 Hz will protect liquid from polarisation and measurng probes from incerased oxidation Galv．separated power supply．	115
HRH－7	${ }^{1865}$	acide	－	－	－	－	－	Suitable to work in harsh conditions due to the high degree of protection IP65．	116
$\begin{aligned} & \text { HRH-8/230V } \\ & \text { HRH-8/110V } \\ & \text { HRH-8/400V } \\ & \text { HRH-8/24V } \end{aligned}$	3－M		－	－	－	－	－	Sensitivity adjustable by potentiometer． Galvanically separated power supply	118
нкн－9	6－M	$\underset{\substack{\text { ACIDC } \\ 2424 \mathrm{~V}}}{ }$	－	－	－	－	－	It monitors up to 6 level levels，each with its own output contact．Optional filling／draining function for each probe eparately incl．delay options．Sensitivity can be set automatically or manually．	120
HRH－6／AC HRH－6／DC	$\begin{aligned} & 1065 \\ & 80 x \end{aligned}$	$\begin{gathered} \text { AC } 230 \mathrm{~V} \\ \text { AC/DC } 12-24 \mathrm{~V} \end{gathered}$	－	－＊	－	－	－	＊Devices mainly designated for monitoring water level in fire－engine tanks	122
$\begin{aligned} & \text { HRH-4/230V } \\ & \text { HRH-4/24V } \end{aligned}$	$\begin{aligned} & \text { P65 } \\ & \text { Box } \end{aligned}$	$\begin{gathered} A C 230 V \\ A C D C 24 V \end{gathered}$	－	－	－	－	－	Unit with no protection devices－adequate protection element needs to be integrated before the unit．Ingress protection of the assembly is IP65．	124
HrH－vs	${ }_{80 \mathrm{P}}^{\text {P65 }}$	$\begin{aligned} & 2304100 \mathrm{~V} \\ & \text { AC } \end{aligned}$	－	－	－	－	－	Level sets placed in the control cabinet with 1P65 protection	
Hrh－ms－VE－4A	$\underset{\substack{\text { P65 } \\ \text { Box }}}{ }$	$\begin{aligned} & 2303100 \mathrm{~V} \\ & \text { AC } \end{aligned}$	－	－	－	－	－	（protected against dust and spraying water）where everything is already connected	125

hice．

－Relay is designed for monitoring levels in wells，basins，reservoirs，tanks，．．． In one device you can choose the following configurations：
－One－level switch of conductive liquids（by connecting H an －Two－level switch of conductive liquids． －One－state device monitors one level，two－state device monit
levels（switches on one level and switches off on another levell． －Adjustable time delay on the output（ $0.5-10 \mathrm{~s}$ ）．
－Sensitivity adjustable by a potentiometer（5－100 k Ω ）．
－Measuring frequency 10 Hz prevents polarization of liquid and raising ing probes．
－Galvanically separated supply voltage UNI 24 to 240 V AC／DC．

HRH-7 | Level switch for monitoring 1 or 2 levels in increased protection
HRH-7 | Level switch for monitoring 1 or 2 levels in increased protection

$\begin{aligned} & \text { EAN code } \\ & \text { HRH-7: } 8595188149471 \end{aligned}$	
Technical parameters	HRH-7
Function:	2
Supply terminals:	A_{1} - A2
Supply voltage:	24 to 240 V AC/DC (AC 50/60 Hz)
Burden:	max. 2VA/1.5 W
Max. dissipated power	
(Un+terminals):	3 W
Supply voltage tolerance:	$-15 \% ;+10 \%$
Max. value of vercharge protection:	16 A
Measuring circuit	
Sensitivity (input resistance):	adjustable from $5 \mathrm{k} \Omega$ - $100 \mathrm{k} \Omega$
Voltage on electrodes:	max. AC3.5 V
Current on probes:	$\mathrm{AC}<0.1 \mathrm{~mA}$
Time response:	max. 400 ms
Max. capacity of probe cable:	800 nF (sensitivity $5 \mathrm{k} \Omega$), 100 nF (sensitivity $100 \mathrm{k} \Omega$)
Time delay (t):	adjustable, $0.5-10 \mathrm{sec}$
Time delay (t) :	1.5 sec
Accuracy	
Setting accuracy (mechanical):	$\pm 5 \%$
Output	
Number of contacts:	1xchangeover/DPDT (AgSnO ${ }_{2}$)
Current rating:	$16 \mathrm{~A} / \mathrm{AC1}$
contact No:	15-18:6 A/AC3
contact NC:	15-16:3 A/AC3
Switching capacity:	4000 VA/AC1, 384 W/DC
Switching voltage:	$250 \mathrm{VAC} / 24 \mathrm{VDC}$
Mechanical life:	30.000 .000 operations
Electrical Ife (AC1):	70.000 operations
Other information	
Operating temperature:	$-20^{\circ} \mathrm{C}$ to $55^{\circ} \mathrm{C}\left(-4{ }^{\circ} \mathrm{Fto} 1311^{\circ} \mathrm{F}\right)$
Storage temperatur:	$-30^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}\left(-22^{\circ} \mathrm{F}\right.$ to $\left.158{ }^{\circ} \mathrm{F}\right)$
Dielectrical strength:	3.75 kV (supply - sensor)
Operating position:	any
Protection:	1P65
Overvoltage category:	III.
Contamination degree:	2
Cable size (mm):	max. $2 \times 2.5 /$ with sleeve max. 2×1.5 (AWG 12)
Dimension:	$139 \times 139 \times 56 \mathrm{~mm}\left(5.55^{\prime \prime} \times 5.5{ }^{4 \prime} \times 2.2^{\prime \prime}\right)$
Weight:	241 g (8.5 oz.)
Related standards:	en 60255-1, en 60255-26, EN 60255-27, EN 60669-1, EN 60669-2-1
Recommended measuring probes:	see pg. 126
Symbol	

- Suitable to operate/work in harsh conditions due to the high degree of
protection IP65. protection IP65.
- Swich monitors th
- It is possible to select the changes in wells, reservoirs, tanks, tankers et - one--evel switch of conductive liquids monitors one level (by connecting H and D)
two-level switch of conductive liquids monitors two levels (switches on at one level and switched off at another level).
Adjustable time delay of output ($0.5-10 \mathrm{~s}$).
- Measuring frequency 10 Hz prevents liquid polarization and increased oxidation of measuring probes.
- Measuring circuits are galvanically separated from the power source of
the product and circuits of the relay contact the product and circuits of the relay contact by enhanced insulation according to EN 60664-1 for overvoltage category III.

Device description

Adjustment eleme
(inside device)

Connection
connection for powe
supply 230 V AC
supply 230 V AC

connection for power
supply 24 to 240 V AC/DC connection for power
supply 24 to 240 V AC/DC

Function PUMP-DOWN

An AC current is used for measuring to prevent polarization and electrolysis of fluid and unwanted oxidation of measuring probes. Three probes are used for measuring: H - upper level D - lower level and C - common probe .f f using a tank unwanted oxidation of measuring probes. .hree probes itself as probe C.
If it is necessary to monitor only one level, there are two connection options:

1. Inputs H and D are connected to a single probe - in this case the sensitivity is decreased to half (2.5 to $50 \mathrm{k} \Omega$),
2. Inputs H and C are connected and the probe is connected to input D - in this case, the original sensitivity remains (5 to $100 \mathrm{k} \Omega$) It is also possible to connect probe C with a protective conductor of the power system (PE).

Example of connecting the level switch to a 1 -phase pump at a well, borehole

wiring for supply 230 VAC (for monitoring two levels)

Monitoring Two LEVELS of the FLUID LEVEL minimum/maximu

RAING function - (PUMP DOWN)
Description of draining function:
the upper and lower probes determines, howere the difference between pump out and protect against running dry. Anning. After this period, the output, the set reaction delay begins the pump, until the minimum level is reached, when the set delay begins the pump, until the minimum level is reached, when the set delay begins running once again. The pump then switches off.

Example of connecting the level switch to a 3 -phase pump at the well, borehole
wiring for supply 230 VAC (for monitoring two levels)

Monitoring TWO LEVELS minimum/maximu
REPLENISHING function - (PUMP UP)
Description of replenishing function:
This function is used when you need to regularly pump in water to a well or borehole, which is leaking.
After detecting the minimum level, the set reaction delay begins running. After this period, the output contact immediately switches on set delay begins running once again. The pump then switches off

Monitoring TWO

 - (PUMP DOWN)Description of draining function:
The function is used to protect agains After detecting the maximum level, the set reaction delay begins running. After this period, the output contact immediately switches on the 3 -phase pump, until the minimum level is reached, when the set delay begins running once again. The pump then switches off.

HRH-8 | Multifunction level switch for monitoring 1 or 2 levels

Technical parameters	HRH-8
Function:	8
Supply terminals:	A1-A2
Voltage range:	AC $110 \mathrm{~V}, \mathrm{AC} 230 \mathrm{~V}, \mathrm{AC} 400 \mathrm{~V}$ or AC/DC 24 V galvanicaly separated (AC 50/60Hz)
Burden max:	$2.5 \mathrm{~W} / 5 \mathrm{VA}(\mathrm{AC} 23 \mathrm{~V}, \mathrm{AC} 110 \mathrm{~V}, \mathrm{AC} 400 \mathrm{~V}$), 1.4W/2VA (AC/DC 24V)
Max. dissipated power	$4 \mathrm{~W}(110 \mathrm{~V}, 230 \mathrm{~V}, 400 \mathrm{~V})$;
(Un+terminals):	3 W (24V)
Supply voltage tolerance:	-15\%; 10%
Measuring circuit	
Hysteresis (input - opening):	in an adjustable range $5 \mathrm{k} \Omega$-100 k Ω
Voltage on electrode:	max. AC 3.5 V
Current in probes:	AC $<1 \mathrm{~mA}$
Time reaction:	max. 400 ms
Max. cable capacity:	800 nF (sensitivity 5k@), 100 nF (sensitivity $100 \mathrm{k} \Omega$)
Time delay t:	adjustable 0.5-10 sec
Accuracy	
Setting accuracy (mech.):	$\pm 5 \%$
Output	
Number of contacts:	2x changeover/SPDT (AgNi/Silver Alloy)
Current rating:	$16 \mathrm{~A} / \mathrm{AC1}$
Breaking capacity:	4000 VA/AC1, $384 \mathrm{~W} / \mathrm{DCC}^{\text {c }}$
Inrush current:	$30 \mathrm{~A} / 33 \mathrm{~s}$
Switching voltage:	$250 \mathrm{VAC} / 24 \mathrm{VDC}$
Output indication:	red LED
Mechanical life:	30.000 .000 operations
Electrical life (AC1):	70.000 operations
Other information	
Operating temperature:	$-20^{\circ} \mathrm{C}$ to $55^{\circ} \mathrm{C}\left(-4{ }^{\circ} \mathrm{Fto} 131{ }^{\circ} \mathrm{F}\right)$
Storage temperature:	$-30^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}\left(-22^{\circ} \mathrm{F}\right.$ to $\left.158{ }^{\circ} \mathrm{F}\right)$
Dielectrical strength:	4 kV (supply - output)
Operating position:	any
Mounting:	DIN rail EN 60715
Protection degree:	IP40 from front pane/IP20 terminals
Overvoltage category:	III.
Pollution degree:	2
Max. cable size (mm):	solid wire max. 1×2.5 or 2×1.5 Wwith caver max. 1×1.5 (AWG 12)
Dimensions:	$90 \times 52 \times 65 \mathrm{~mm}\left(3.5^{\prime \prime} \times 2^{\prime \prime} \times 2.6{ }^{\text {c }}\right.$
Weight:	$24 \mathrm{~g} / 8.7 \mathrm{Oz}(110 \mathrm{~V}, 230 \mathrm{~V}, 400 \mathrm{~V}) ; 145 \mathrm{~g} / 5.10 \mathrm{z}(24 \mathrm{~V})$
Standards:	EN 60255-1, EN 60255-26, EN 60255-27, EN 60669-1, EN 60669-2-1
Measuring sensors:	see pg. 126

Measuring probes

There can be any measuring probe (any conductive contact, it is ecommended to use brass or stainless steel).
When using a shielded wire, the shielding is connected to terminal s.

Relay is designed to control the level of conductive liquids in wells, tanks,
pools, tankers, reservoirs,... (replacement $H R H-1$. Galvanically isolated supply and guard circuits.

- Within one device, the following configurations

Within one device, the following configurations can be selected
2x one-level monitoring (in separate tanks)
$1 \times$ two-level monitoring (in one tank)
$1 \times$ two-level monitoring (in one tank)
pumping from one tank to another.

- DIP switch selection on the front panel (8 functions).
- Adjustable probe sensitivity (for each probe separately).
- Adjustable relay switching delay (for each probe separately).
- 10 Hz watch frequency prevents polarization of the liquid and increases resistance to interference by network frequency.

Description
HRH-8/24V

Description and importance of DIP switches

Connection

Symbol

HRH-8 (110V, 230V, 400V)

Functions

PUMP UP, OFF DELAY (Function 1,3,4)

PUMP DOWN, OFF DELAY (Function 6)

WELL - TANK, OFF DELAY (Function 7)

The relay is designed to monitor the level of conductive liquids with a choice 8 functions:

1) - 2 separate tanks (each with 1 probe) - both PUMP UP (filling)
2) - 2 separate tanks (each with 1 probe) - both PUMP DOWN (emptying)
3) -2 separate tanks (each with 1 probe) - H PUMP DOWN probe, D PUMP
UP probe UP probe
4) - 2 separate tanks (each with 1 probe) - H PUMP UP probe, probe D PUMP) - both
H and D (as HRH-5) retank - PUMP UP - maintain level between probes not between probes H and D)
) Both probesid probes H and D (as $\mathrm{HRH}-5$), relay 1 switches on the pump , probes H and D (as HRH-5), relay 1 switches on the pump, relay 2 alarm
(the level is not between probes H and D) - Pumping from the well to the tank - prot
tank. The pump only runs if the probe D is flooded (enough water in the well) and the tank is not full (probe H). The alarm reports a lack of water in the well (probe D is not flooded).
5) - Pumping from the sump to the tank - probe D in the sump, probe H in the tank. The pump only runs if the probe D is flooded (full tank) and
the tank is not full (probe H). The alarm reports the status of full tank and sump (both probes are flooded)

PUMP DOWN, ON DELAY (Function 6)

WELL - TANK, ON DELAY (Function 7)

LED indication:
The red LED lights up - the corresponding relay is switched on
Red LED flashes - delay timing
The yellow LED indicates probe failure - Functions 5,6 probe H is flooded and probe D is not. At the same time both red LEDs flash.
To prevent polarization and electrolysis of the liquid and undesirable oxidation of the monitoring probes, an AC current of 10 Hz is used for moxitor tion of the monitoring probes, an Ac current of 10 Hz is used for monitor-
ing. The low frequency has a positive effect on suppression of interference by $50(60) \mathrm{Hz}$. Three probes are used to monitor the level: H - upper level, D- lower level and C-common probe. In the case of the use of a conductive material tank, it is possible to use the tank itself as a C probe. Probe C can
also be connected to the protective conductor of the power supply system also be connected to the protective conductor of the power supply system
(PE). To prevent undesired switching by various influences (soiling of dips, moisture...), the sensitivity of the device can be set according to the conductivity of the liquid being monitored (corresponding to the "resistance" of the
liquid) in the range of 5 to 100 kO To l limit he effect of undesided swith liquid) in the range of 5 to 100 k . To limit the effect of undesired switching of
output contacts by raising the liquid level in the tank, it is possible to set the output contacts by raising the liq.
output response delay $0.5-10 \mathrm{~s}$.

Technical parameters
Supply
Splat

Supply voltage:
Supply voltage tolerance:
galvanicaly separated volta galvanicaly sepa
Burden max::
Max. dissipated Max. dissipated power (Un+ terminals): $\frac{\text { Power indication: }}{\text { Measuring circuit }}$ Number of level probes: Adjustable probe function: Voltage on probes:
Time reaction in probes: ${ }^{\text {Time delay }}$ (PROBE DELAY): Max. capacity of probe cable:
Probe sensitivity calibration range
Sensitivity range of probes
manually for probes $4,5,6$:
Time delay
(START DELAY):
Probe status indication:
Output
Number of contacts:
Current rating:
Switching voltage max::
Breaking capacity max::
Breaking capacity m a
Mechanical lif:
Electrical life (AC1):
Other information
Operating temperature:
Storage temperature:
Dielectrical strength:
power supply - relay contacts
Contacts of adjacent relas
Operating position:
Mounting:
Protection degree:
Pollution degree:
Max. cable size (mm²)

probes/power supply/signaling output part:	solid wire max. 1×2.5 or $2 \times 1.5 /$ with cavern max. 1×1.5 (AWG 12) solid wire max. 1×2.5 or 2×1.5 /with cavern max. 1×1.5 (AWG 12)
Dimensions:	$90 \times 105 \times 65 \mathrm{~mm}\left(3.55^{\prime \prime} \times 4.1{ }^{11} \times 2.6\right)$
Weight	252 g (8.9 oz.)
Standards:	EN $60255-1$, EN $60255-26$, EN $60255-27$,

- The relay is designed to control the level of conductive liquids in wells,
sumps, tanks, pools, tankers, reservoirs ...
- Galvanically separated power and monitoring circuits.
- Possibility to connect up to 6 level probes (+ one common probe)
- Each probe has its own output relay function selection for each probe separately.
Adjustable delay after power on (START Delay).
- Adjustable relay closing delay (Probe Delay) - common for all probes. - Automatic calibration of the sensitivity of the probes according to the
conductivity of the monitored liquid. conductivity of the monitored liquic.
For probes $4,5,6$ possibility of manual sensitivity adjustment.
- A monitoring frequency of 10 Hz prevents polarization of the liquid and .

Description

Function

Green LED Un:
START DELAY after the power is turned on

- During this time the device does not respond to the state of the level
- After START DELAY, the green LED lights up permanently

START DELAY control:

- : the START DELAY, delay in the range 0 to 30 minute
Level probe function switch FUNC. L1 (L2 to to LG):
total of 6 level probes L to $\mathrm{L} 6+$ common probe C can be connected to
the device. Each probe has its own function switch, which sets the func-
tions PUMP UP, PUMP DOWN, ON - permanently
tiolay closed, FFF - permanently open relay.
Positions $1-4=$ PUMP UP
Positions $5-8=$ PUMP DOWN
- Position $9=$ ON (relay permanently closed, red LED lit)
- Position $10=$ OFF (relay open, red LEE not lit)
Each of the PUMP UP, PUMP DOWN fuction

Each of the PUMP UP, PUMP DOWN functions has 4 response delay
setting options:
a - function without delay
b-ON DELAY - delayed clos
b- ON DELAY- delayed closing of the relay
C-OFF DELAY - delayed opening of the relay
d-ON/OFF DELAY - delayed closing and opening of the relay

Wiring example

Level probes in the tank:
-the common probe C is positioned so that it is always immersed

- the position of the L1 probe determines the lower level, the position of the L2 probe determines the upper level
- the connection is used to maintain the level between the L1 and L2 probes
Description of the PUMP DOWN function:

Description of the PUMP DOWN function:

- if the tank is empty, both probes L1 and L2 are not immersed, both relays re1 and re2 are open. Contactor K1 controlling the pump is also open (pump
stopped)
- if the tank is filled, after reaching the $L 1$ level the relay re1 closes and the state does not change further
- after reaching the level L2 L2 the relay re2 closes and at the same time the contactor K Kloses (the pump works)
- when the level drops below L2, relay re2 opens, but the contactor remains closed via its switching conta
- when the level drops below $\mathrm{L1}$, relay rel opens and at the same time contactor K1 opens (pump stops)

Description of the PUMP UP function:

- if the tank is empty, both probes L1 and L2 are not immersed, both relays re1 and re2 are closed. Contactor K 1 controlling the pump is closed
(-if the tank is is filed, after reaching the level $L 1$ the relay rel opens - the state does not change - the contactor remains closed via its switching contact - after reaching the level LL, the relay re2 opens and at the same time the contactor K1 (the pump stops)
- when the level drops
when the level drops below $L 1$, relay rel closes and at the same time contactor K1 closes (pump starts).
Connection with additional signalization HRH-9/5

- Function 1 monitors minimal and maximal level depth, for example in fire engine cars, tanks etc.
- Function 2 monitors level depth in water collectors, basins, pools etc.
- Selection of particular function is made by jumper on the front panel - Selection of particular function is made by jumper on the front panel, - Level indicationby six LED's on the front panel of the device. - It is possible to connect another indication module (e.g. in fire-engine
cabin). cabin).
- Measuring frequency 10 Hz to prevent polarization of liquid.
- Supply voltage 12 to 24 VDC (to be used in fire-engines) or galvanically
separated 230 VACf for general use. separated 230 V AC for general use.
a chosen function). - Choice of functions PUMP UP/OFF/PUMP DOwn by a switch located on the front panel of the device.

Description

HRH-6/DC Basic unit

HRH-6/S Auxiliary signalling

Setup elements (inside basic unit)

HRH-6 block connecting

* In case of HRH-6/DC, incoming supply is connected on terminals +Un and - Un.

This device monitors level of a conuctive liquid in a tank by using six single probes or one 6 -fold probe. In case you use a tank made of a conductive material, it is possible to use it as a common probe C.
This common probe is connected to a pole of supply (for fire-engines it means its body) in case of supply voltage 12 to 24 VDC
In case of supply voltage 230 VAC , the circuits are galvanically separated from the main.
The device is controlled by a three-position switch PUMP UP/OFF/PUMP DOWN. After switching into a position PUMP UP or PUMP DOWN, red LED1 shines and then also LED2 to LED6 according to liquid level. Output relay has 2 selectable functions.
Funtion setting is done by a jumper on basic board of HRH-6.
Function 1: (for use in fire-engines) - jumper is applied. In case of function PUMP UP and level reaching L5, the relay controlling e.g. acustic signalization permanently closes and indicated full tank. In case of PUMP DOWN function and level dropunder level L $L 3$, relay priodically switches and under L2 it switches permanently (indicates almost empty tank).
again in case the liguid level falls under - jumper is not applied. In case of PUMP UP, sensor is switched until liquid reaches level L. Then relay opens and switches on level L5.
To eliminate LED flashing while level gurgle it is possible to delay reaction of probes (set delay 1 to 10 s). According to conductivity of liquid it is possible to set sensitivity of probes (corresponding to "resistance" of liquid)

- In an easy way it automates operations of pumps depending on level. - Control of level in wells, tanks, reservoirs...

T

- It serves for an automatic operation in 1 -phased and 3 -phased pumps.
- Set of level switch HRH-5 and a contactor VS425.
- Function choice - pumping up or down.
- Unit requires incoming over-current protection.
- Protection degree of the set is IP65.
- There is a possibility of 4 types of probes in a various design (they are not
a part of this set. it is possible to deliver). a part of this set, it is possible to deliver)
Unit is placed in a plastic box with dimensions $160 \times 135 \times 83 \mathrm{~mm}$ (6.3"x $\left.5.3^{\prime \prime} \times 3.3^{\prime \prime}\right)$.

Function
Function PUMP UP

Function PUMP DOWN

- Level sets are used to monitor levels in wells, reservoirs, tanks... - Advantage is the possibility of setting PUMP UP and PUMP DOWN and also delayed switching (e.g. in case of level fluctuations).
connection to 1 or 3 -phase pump (depending on the type of set).
- Easy to install without complicated wiring - ready for installation.
- There are Level sets placed in switchboard with IP65 protection (protected against dust and against water jets)
HRH-VS: level switch HRH-5 with installation contactor VS $425-40$ 25 A contact).
(25 A contact) and with motor starter MS18 2.5-4 A.

Functions
PUMP DOWN function (DOWN) used for protection against Idle Running or against overflow and flooding areas.
response. After that output contact immediately turns on single or 3 -phase pump, untilit reaches the minimum level. Then the pump turns off.
In case that a reservoir is made of a conductive material, e.g. metal tanks,
there can be a difference in connection of HRH-5 leve sets - it is not necessary to put inside a common probe "C" and connect with SHR-2 probe, but thanks to conductivity of vessel we can connect probe C to the reservoir body.
The length of w
The length of wire cable (between the level switch and probe) can be up to 5 m . We don't recommend placing near the power lines, because the
sensitivity of equipment can be affected and thus the entire functionality. Recommended accessories:
-3 wire cable D03VV-F 3x0,75/3,2

- SHR-2 probe - probe covered by PVC (protected) - used in moderately polluted waters, drilling, wells. Assembly - hanging in the well.
SHR-1-M, SHR-1-N

SHR-1-M: brass sensor
SHR-1-N: stainless steel sensor

- Sensor to control flooding.

Suitable for use in drinking water
Electrode with diametr $4 \mathrm{~mm}\left(0.2^{\prime \prime}\right)$ is placed in
Panel or to holder mounting
minal board shrink bushing for feeder place insulation is Max wire profile,

- Installation: after connecting a wire to the sensor, run the shrink bushing over the wire onto the sensor.
- Heat the sensor and by shrinking the connection of sensor and wire will be hermetical. Weight: 9.7 g (0.3 oz.)
Operating temperature: $-25^{\circ} \mathrm{C}$ to $+60^{\circ} \mathrm{C}\left(-133^{\circ} \mathrm{F}\right.$ to $\left.140^{\circ} \mathrm{F}\right)$
-Total sensor lenght: $65.5 \mathrm{~mm}\left(2.58^{\prime \prime}\right)$

SHR-2

evel probe SHR-2

Detection sensor is electrode, which in connection with switchable device is used for leve| detection for example in wells, tanks,
To be ued in electric conductive fluids and mechanically polluted fluids with temperature: $1^{\circ} \mathrm{C}$ to $80^{\circ} \mathrm{C}\left(33.8^{\circ} \mathrm{F}\right.$ to $176^{\circ} \mathrm{F}$).

Stainless steel one-pole electrode reside in PVC cover, intended for tank wall mounting or mounting by socket.
To ensure corret function of the sensor, it is necessary to have the electrode without dirt which could disable the connection of the electrode and fluid and thus lead to malfunction. Max. wire profile: $2.5 \mathrm{~mm}^{2}$ (AWG 10

- Installation:
- conductor wire is connected by feazing of two brass screws to stainless stee electrode, - conductor is caulked by bushing Pg7 with protection degree IP68.
- Weight: 48.6 g (1.7 oz.)

Dimensions: max. diameter $21 \mathrm{~mm}\left(0.8^{\prime \prime}\right)$, lenght $96 \mathrm{~mm}\left(3.8^{\prime \prime}\right.$
SHR-2 in open state

$0 \mathrm{~m} / \mathrm{m} \square$ et

Level probe SHR-3

Stainless probe to be used into demanding industrial environments, designated for screwing into tank wall or cover
Suitable for use in drinking water.
cover. Installation is done by soldering or by fixing nut. It is necessary to so side or in tank screw. It is necessary to use an adequate torque with regards to a seal and operational overpressure in a tank.
Sensor has connecting wire - lenght 3 m , which is connected to sensor to scan electrode and sensor bushing connecting wire is double-wire PVC AWG $18\left(0.75 \mathrm{~mm}^{2}\right)$, connection of wires: brown - scan electrode, blue - sensor bushing.
Connection M18x1.5 screw.
Sensor weight without cable: 100 g (3.3 oz.).
Operating surroundings: place without the danger of detonation, temperature on screw: max. $95^{\circ} \mathrm{C}\left(203^{\circ}\right)$. .
Pressure immunity: on $25^{\circ} \mathrm{C}\left(77^{\circ} \mathrm{F}\right) 4 \mathrm{MPa}$, on $95^{\circ} \mathrm{C}\left(203^{\circ} \mathrm{F}\right) 1.5 \mathrm{MP}$
Weight: 239 g (8.4 oz.).
nd sean electrode: stainless steel W.Nr. 1.4301, insulation insert of elec-
Operating terel: self - extinguishing epoxide resin.
Total sensor lenght: $65.5 \mathrm{~mm}\left(2.58^{\prime \prime}\right)$.

D03VV-F | Cables $3 \times 0.75 \mathrm{~mm}$

(able to probes SHR-1 and SHR-2, $3 \times 0.75 \mathrm{~mm}^{2}$ (AWG 18) with a certification for drinking water, 1 m (39.37).
Construction:
bright copper stranded core of hole
core insulation of special
sheath of special PVC.

- Technical specifications and usage:
- the product meets requirements for direct and permanent contact with drinking water according to $\$ 5$ of the Act. 258/2000 Decree of the Min-
istry of Health. $409 / 2005 \mathrm{Sb}$. istry of Health. $409 / 2005 \mathrm{Sb}$., On hygienic requirements for products Coming into direct contact with drinking water and water treatment
usable up to $70^{\circ} \mathrm{C}\left(158^{\circ} \mathrm{F}\right)$ suitable for submersible conductivity probes for the boreholes, w and tanks
itable for probes used for level detection of conductive liquids cable capacity is max. $12.3 \mathrm{nF} / 100 \mathrm{~m}(328$)

Technical paramete
D03VV-F 3x0.75/3.2

Technical parameters	D03VV-F 3x0.75/3.2
Rated voltage:	300/300 V
Test voltage:	2 kV
Capacity:	max. $12.3 \mathrm{nF} / 100 \mathrm{~m}$ (328)
Core diameterwith insulation:	$3.2 \mathrm{~mm}\left(0.12^{\prime \prime}\right)$
Overall diameter of cable:	$8.1 \mathrm{~mm}\left(0.31{ }^{1 \prime}\right)$
Section:	$0.75 \mathrm{~mm}^{2}$ (AWG 18$)$
Length:	1 m (39.37)

Cross-section

D05V-K |Cables and wires suitable

Cable to probes SHR-1 and SHR-2,3x $0.75 \mathrm{~mm}^{2}$ (AWG 18) with a certifica tion for drinking water, 1 m (3.4).
Construction:
right copper stranded core of hole
sulation of special PVC.
the product meets requirements for direct and permanent contact with drinking water according to $\$ 5$ of the Act. $258 / 2000$ Decree of the Ministry of Health. 409/2005 Sb., On hygienic requirements for products oming into direct contact with drinking water and water treatment
suitable for probes used for level detection of conductive liquids.

Analog modular

TER-3A	TER-3B	TER-3C	TER-3D	TER-3G	TER-3H	TER-3E	TER-3F
	$0^{\circ} \mathrm{C}$ to $40^{\circ} \mathrm{C}$ page 131	extemal NTC. page 131	$0^{\circ} \mathrm{Ct}$ to $00^{\circ} \mathrm{C}$ $\left(32^{\circ} \mathrm{F}\right.$ to $\left.140^{\circ} \mathrm{F}\right)$ external NTC. page 131	${ }^{\circ} \mathrm{C}+100^{\circ} \mathrm{C}$ exteral Prino page 131		$\begin{gathered} \left(32^{\circ} \mathrm{F} \text { to } 140^{\circ} \mathrm{F}\right) \\ \text { external } \mathrm{NTC} \text {. } \\ \text { page } 131 \end{gathered}$	$\begin{gathered} 0^{\circ} \mathrm{C} \text { to } 60^{\circ} \mathrm{C} \\ \left(32^{\circ} \mathrm{F} \text { to } 140^{\circ} \mathrm{F}\right) \\ \text { in-built NTC. } \\ \text { page } 131 \end{gathered}$

$$
\begin{aligned}
& \text { TER-4 }
\end{aligned}
$$

Analogue in increased protection

Digital

TER-9

Thermovalve
ATV-1

Hygrostat

$$
\begin{aligned}
& \underset{\text { Hyyrothermosin }}{\text { RHV-1 }}
\end{aligned}
$$

$$
\begin{aligned}
& 1 .
\end{aligned}
$$

Hygro-thermostat
!
RHT-1
Hygro-thermostat for temperature

and relative humiditiy y onitoring
and reustation in range 50 to to 00%
page 141

Accessories

- Single thermostat for temperature monitoring and regulation in range
$-30^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}\left(-22^{\circ} \mathrm{F}\right.$ to $\left.158^{\circ} \mathrm{F}\right)$ in six ranges. $-30^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}\left(-22^{\circ} \mathrm{F}\right.$ to $\left.158^{\circ} \mathrm{F}\right)$ in six ranges. ing systems, cooling systems, liquids, radiators, mot swithboards, heatspaces, etc.
- Possibility to set function "heating"/"cooling".
- Adjustable hysteresis (sensitivity), switching by potentiometer in range
0.5 to $5^{\circ} \mathrm{C}\left(0.9\right.$ to $\left.9^{\circ} \mathrm{F}\right)$. 0.5 to $5^{\circ} \mathrm{C}\left(0.9\right.$ to $\left.9^{\circ} \mathrm{F}\right)$.

Choice of external temperature sensors with double insulation in standard lengths 3,6 and $12 \mathrm{~m}\left(9.8^{\prime}, 19.7^{\prime}\right.$ and 39.4^{\prime}).

- It is possible to place sensor directly on terminal block - for temperature
monitoring in a switchboard or in its surroundings Red LED indi a switchboard or in its surroundings.
the device.
Description
Supply voltage indication
Function

It is a single but practical thermostat with separated sensor for monitoring temperature. Devicice is placed in a switchboard and external sensor sensses
temperature of required space, object, or liauid. Suptly is not salvanically separated from sensor. Sensor is double insulated Maximal length of delivered sensor is $12 \mathrm{~m} / 394^{4}$. device has in-built. indication of sensor damage, which means that in case of short-circuit or disconnection red
LED flashes. Thanks to adiustable hysteresis, it is advantageous to regulate width of the range and thus define sensitivity of load switching. Sensed temperature is decreased by set hysteresis. When installing it is necessary to keep in mind that hysteresis is increased by temperature gradient
between sensor's jacket and thermistor. Connection

Symbol

Technical parameters	TER-3E	TER-3F
Function:	single level	
Supply terminals:	A1-A2	
Voltage range:	AC/DC $24-240 \mathrm{~V}$ ($\mathrm{AC} \mathrm{50/60} \mathrm{Hz)}$	
Burden:	max. 2 va/1 w	
Max. dissipated power		
(Un + terminals):	2.5 w	
Supply voltage tolerance:	- 15%; $+10 \%$	
Measuring circuit		
Measuring terminals:	T1-T1	x
Temperature range:	0 to $+60^{\circ} \mathrm{C} /\left(32^{\circ} \mathrm{F}\right.$ to $\left.140{ }^{\circ} \mathrm{F}\right)$	
Hysteresis:	fixed $1^{\circ} \mathrm{C} /\left(1.8^{\circ} \mathrm{F}\right)$	
Sensor:	thermistor NTC	in-built
Sensor fault indic. (short-circuit/disconnection):	flashing red LED	
Accuracy		
Setting accuracy (mech.):	5\%	
Switching difference:	$0.5{ }^{\circ} \mathrm{C}\left(0.9{ }^{\circ} \mathrm{F}\right)$	
Temperature dependance:	$<0.1 \%^{\prime} \mathrm{C}$ ($\left.{ }^{\circ} \mathrm{F}\right)$	
Output		
Number of contacts:	1× NO-SPST (AgSnO ${ }^{\text {a }}$	
Current rating:	$16 \mathrm{~A} / \mathrm{AC}, 10 \mathrm{~A} / 24 \mathrm{VDC}$	
Breaking capacity:	$4000 \mathrm{VA} / \mathrm{AC1}, 300 \mathrm{~W} / \mathrm{DC}$	
Switching voltage:	$250 \mathrm{VAC} / 24 \mathrm{VDC}$	
Output indication:	red LED	
Mechanical life:	30.000 .000 operations	
Electrical life (AC1):	70.000 operations	
Other information	$-20^{\circ} \mathrm{Cto} 55^{\circ} \mathrm{C}\left(-4 \mathrm{~F}\right.$ Fo $\left.131{ }^{\circ} \mathrm{F}\right)$	
Operating temperature:	$-30^{\circ} \mathrm{Cto} 70^{\circ} \mathrm{C}\left(-22^{\circ} \mathrm{F}\right.$ to $\left.158{ }^{\circ} \mathrm{F}\right)$	
Storage temperature:	2.5 kV (supply - output)	
Dielectrical strength:	any	
Operating position:	DIN rail en 60715	
Mounting:	IP40 from front pane//IP10 terminals	
Protection degree:	III.	
Overvoltage category:	2	
Pollution degree:	solid wire max. 2×2.5 or 1×4	
Max. cable size (mm):	with sleeve max. 1×2.5 or 2×1.5 (AWG 12) $90 \times 17.6 \times 64 \mathrm{~mm}\left(3.5^{\prime \prime} \times 0.7^{\prime \prime} \times 2.5^{\prime}\right)$	
Dimensions:	$90 \times 17.6 \times 64 \mathrm{~mm}$	
Weight:	$64 \mathrm{~g}(2.3 \mathrm{oz}$)	$60 \mathrm{~g}(2.10 \mathrm{zz})$
Standards:	En 60255-1, en 6025-26,	EN 60255-27, IEC 60730-2-9

- Single thermostat for temperature monitoring and regulation in range
0 to $+60^{\circ} \mathrm{C}\left(32^{\circ} \mathrm{F}\right.$ to $\left.140^{\circ} \mathrm{F}\right)$. 0 to $+60^{\circ} \mathrm{C}\left(32^{\circ} \mathrm{F}\right.$ to $\left.140^{\circ} \mathrm{F}\right)$.
- It can be used for temperature monitoring e.g. in switchboards, heating systems, liquids, radiators, motors, devices, open spaces, etc.
Fixed hyster
TER-3E:
standard length $3\left(9.8^{\prime}\right), 6\left(19.7^{\prime}\right)$ and $12 \mathrm{~m}\left(39.4^{\prime}\right)$.
- TER-3F: sensor is a part of device, serves for monitoring temperature in a switchboard.

	Supply voltage terminials		Supply voltage terminals $(\mathrm{A} 1-\mathrm{A})$
$\begin{array}{\|l\|l\|} \hline A_{1}+a^{2} \\ \hline \end{array}$			
Q	Exteral sensor terminal (71)		
	Output indication	\mid	Output indication
	Supply voltage indication		Supply voltage indication
O-	Temperature adiusting	\bigcirc	Temperature adjusting
1		-	Senzor
Q10	Output contacts (15-18)	9010	Output contacts (15-18)

Function

It is a single thermostat for temperature monitoring with separated sensor (except for TER-3F). Device is located in a switchboard and external sensor senses temperature of required space, object or liquid. Supply is not galvani-
cally separated from sensor but sensor is double insulated. Maximal length of cally separated from sensor but sensor is double insulated. Maximal length of
sensor cable is $12 \mathrm{~m}(39.4)$. Temperature sensing is decreased by set hysteresis. When installing it is necessary to keep in mind that hysteresis is increased by temperature gradient between sensor's jacket and thermistor.

Connection
Symbol

Technical parameters	TER-7
Function:	monitoring temperature of motor winding
Supply terminals:	A1-A2
Voltage range:	AC/DC $24-240 \mathrm{~V}$ ((AC 50/60 Hz)
Burden:	max. $2 \mathrm{VA} / 1 \mathrm{~W}$
Max. dissipated power	
(Un + terminals:	2.5 W
Supply voltage tolerance:	-15\%; 10%
Measuring circuit	
Measuring terminals:	т-Tb
Cold sensor resistance:	50 Ω - $1.5 \mathrm{k} \Omega$
Upper level:	3.3 k ת
Botton level:	1.8 k
Sensor:	PTC temperature of motor winding
Sensor failure indication:	blinking red LED
Accuracy	
Accuracy in repetition:	< 5 \%
Switching difference:	$\pm 5 \%$
Temperature dependance:	$<0.1 \% \%^{\prime} \mathrm{C}$
Output	
Number of contacts:	$2 \times$ changeover/DPDT (AgNi/Silver Alloy)
Currentrating:	$8 \mathrm{~A} / \mathrm{AC1}$
Breaking capacity:	2000 VA/AC1, 192 W/DC
Inrush current:	$10 \mathrm{~A} / 23 \mathrm{~s}$
Switching voltage:	$250 \mathrm{VAC} / 24 \mathrm{VDC}$
Mechanical life:	30.000.000 operations
Electrical life (resistive):	70.000 operations
Other information	
Operating temperature:	$-20^{\circ} \mathrm{Cto} 55^{\circ} \mathrm{C}\left(-4 \mathrm{~F}\right.$ to $\left.131{ }^{\circ} \mathrm{F}\right)$
Storage temperature:	$-30^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}\left(-22^{\circ} \mathrm{F}\right.$ to $\left.158{ }^{\circ} \mathrm{F}\right)$
Dielectrical strength:	4 kV (supply - output)
Operating position:	any
Mounting:	DIN rail EN 60715
Protection degree:	IP40 from front pane//IP20 terminals
Overvoltage category:	III.
Pollution degre:	2
Max. cable size (mm):	solid wire max. 1×2.5 or $2 \times 1.5 /$ with sleeve max. 1×2.5 (AWG 12)
Dimensions:	$90 \times 17.6 \times 64 \mathrm{~mm}\left(3.5^{\circ} \times 0.7^{\prime \prime} \times 2.5\right)$
Weight:	$71 \mathrm{~g}(2.50 \mathrm{oz}$)
Standards:	EN 60255-1, EN 60025-26, EN 60255-27, IEC 60730-2-9

Note
Sensors could be in series in abide with conditions in technical specification - switching limits.

- It monitors motor coil temperature.
- Fixed levels of switching.

PTC sensor is used for sensing, it is in-built in motor winding by its manuacture or here is used an external PTC sensor.
intervention (press relay is blocked in an error state until until operator - RESET of faulty state:
a) button on the front panel
b) by external contact (remote by two wires).
terminal PE withour damaging thly separated, they can be shorted out by terminal PE without damaging the device.

Description

Function

The device controls temperature of motor winding with PTC thermistor
which is mostly placed in motor winding or very close to it. Resistance of which is mostly placed in motor winding or very close to it. Resistance of
PTC thermistor run to max $1.5 \mathrm{k} \Omega$ in cold stage. By temperature increase PTC thermistor run to max $1.5 \mathrm{k} \Omega$ in cold stage. By temperature increase
the resistance goes strongly up and by overun the limit of $3.3 \mathrm{k} \Omega$ the contact of output relay switch off - mostly contactor controlling a motor. By temperature decrease and thereby decrease of thermistor resistance under
$1.8 \mathrm{k} \Omega$ the output contact of relay again switches on. The relay has function $1.8 \mathrm{k} \Omega$ the output contact of relay again switches on. The relay has function
"Control of sensor fautt". This controls interruption or disconnection of sensor. When switch is in position "TK" monitoring of faulty sensor is not functional - it is possibel to connect bimetal sensor with only 2 states: ON or
OFF.The device can work with bi-metal sensor in this position OFF. The device can work with bi-metal sensor in this position. Other safety
unit is function "Memory". By temperature overrun (and output switches unit is function "Memory". By temperature overrun (and output switches
off) the output is hold in faulty stage until service hit. This bring the relay to normal stage (with RESET button) on front panel or by external contact (remote).
Connection
Symbol

TER-4 | Double thermostat with a range of -40 to $+110^{\circ} \mathrm{C}$

Technical parameters	TER-4
Function:	double thermostat
Supply terminals:	A1-A2
Voltage range:	AC 230V (AC 50/60 Hz), AC/DC 24 V galvanically separated
Burden max:	$5 \mathrm{VA} / 2.5 \mathrm{~W}$
Max. dissipated power	
(Un+terminals:	5.5 W
Supply voltage tolerance:	- 15%; + 10%
Measuring circuit	
Measuring terminals:	T1-T1 and T2-T2
Temperatue ranges	$-400^{\circ}-25^{\circ} \mathrm{C}\left(-458\right.$ to-13 $\left.{ }^{\circ} \mathrm{F}\right) \quad+35^{\text {to }}+50^{\circ} \mathrm{C}\left(95\right.$ to $\left.122^{\circ} \mathrm{F}\right)$
(set via switch individually	-25 to -10 ${ }^{\circ} \mathrm{C}\left(-13\right.$ to $\left.14^{\circ} \mathrm{F}\right) \quad+50 \mathrm{to}+65^{\circ} \mathrm{C}\left(122\right.$ to $\left.149^{\circ} \mathrm{F}\right)$
for each level):	-10 to $+5^{\circ} \mathrm{C}\left(14 \mathrm{to41} 1^{\circ} \mathrm{F}\right) \quad+6550+80^{\circ} \mathrm{C}\left(199 \mathrm{to} 1766^{\circ} \mathrm{F}\right)$
	+5 to $+20^{\circ} \mathrm{C}\left(41 \mathrm{to6} 88^{\circ} \mathrm{F}\right) \quad+80 \mathrm{to}+95^{\circ} \mathrm{C}\left(176\right.$ to $\left.203^{\circ} \mathrm{F}\right)$
	$+20 \mathrm{to}+35^{\circ} \mathrm{C}\left(68\right.$ to $\left.95^{\circ} \mathrm{F}\right) \quad+955^{\text {to }+110^{\circ} \mathrm{C}} \mathbf{(2 0 3}$ to $\left.233^{\circ} \mathrm{F}\right)$
Fine temperature setting:	$0-15^{\circ} \mathrm{C}$, in selected range
Hysteresis for T :	adjustable, 0.5 or $2.5{ }^{\circ} \mathrm{C} / 0.9$ or $4.5{ }^{\circ} \mathrm{F}$ (IIP switch)
Hysteresis for T :	adjustable, 0.5 or $2.5{ }^{\circ} \mathrm{C} / 0.9$ or $4.5{ }^{\circ} \mathrm{F}$ (IDP switch)
Sensor:	thermistor NTC $12 \mathrm{k} / 2 / 25^{\circ} \mathrm{C}\left(77^{\circ} \mathrm{F}\right)$
Sensorfailure indication:	yellow LED + Red LED flashes
Accuracy	
Setting accuracy (mech.):	5\%
Temperature dependance:	$<0.1 \% /{ }^{\prime} \mathrm{C}(\mathrm{F})$
Output	
Number of contacts:	2x changeover/SPDT (AgN/SSilver Alloy)
Current rating:	$16 \mathrm{~A} / \mathrm{AC1}$
Breaking capacity:	$4000 \mathrm{VA/AC1}, 384 \mathrm{~W} / \mathrm{DC}$
Inrush current:	$30 \mathrm{~A} /<3 \mathrm{~s}$
Switching voltage:	$250 \mathrm{VAC} / 24 \mathrm{VDC}$
Output indication:	red LED
Mechanical life:	30.000 .000 operations
Electrical life (AC1):	70.000 operations
Other information	
Operating temperature:	$-20^{\circ} \mathrm{C}$ to $55^{\circ} \mathrm{C}\left(-4{ }^{\circ} \mathrm{Fto} 131{ }^{\circ} \mathrm{F}\right)$
Storage temperature:	$-30^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}\left(-22^{\circ} \mathrm{F}\right.$ to $\left.158{ }^{\circ} \mathrm{F}\right)$
Dielectrical strength:	4 kV (supply - output)
Operating position:	any
Mounting:	DIN rail en 60715
Protection degree:	IP40 from front pane/IP20 terminals
Overvoltage category:	III.
Pollution degree:	2
Max. cable size (mm):	solid wire max. 1×2.5 or $2 \times 1.5 /$ with sleeve max. 1×1.5 (AWG 12)
Dimensions:	$90 \times 52 \times 65 \mathrm{~mm}\left(3.5^{\prime \prime} \times 2^{\prime \prime} \times 2.6\right)$
Weight:	$240 \mathrm{~g} 8.9 \mathrm{oz}(230 \mathrm{~V}), 146 \mathrm{~g} / 5.40 \mathrm{z}(24 \mathrm{~V})$
Standards:	en 60255-1, en 60255-26, en 6025-27, IEC 60730-2-9

- Double thermostat for temperature monitoring and regulation ove a wide range of temperatures.
- Temperature range switch and fine temperature setting for each thermostat. systems, moter terature monitoring in switchboards, heating or cooling - Galvanically isolated power supply AC 230 V or $\mathrm{AC} / \mathrm{DC} 24 \mathrm{~V}$.
- 2 inputs for temperature sensors NTC $12 \mathrm{k} / 25^{\circ} \mathrm{C}$.
- Setting independent or dependent thermostat function (see function description).
Heating/cooling function selection.
Adjustable switching hysteresis (sensitivity).
- Two output relays (for each level independent).

Description

Supply voltage terminals
$(11-$ A2)
Trminals for sensor comnection
(A1- - 2)
Supply indication

Description and importance of DIP switches

Function iND	\square	DEP	Independentdependent function of thermostas
Function Heat	\square	Cool	Heating/coling function

Connection

Symbol

Function

Each thermostat has its own temperature sensor, coarse and fine temperature setting, hysteresis setting and its output relay The set temperature is set as the sum of the selected temperature range and fine temperature setting

$$
\begin{aligned}
& \text { Example: Required t temperature } \\
& \text { Set range. }+25^{\circ} \mathrm{C}\left(77^{\circ} \mathrm{F}\right) \\
& \text { Fine setting }+20^{\circ} \mathrm{C}\left(60^{\circ} \mathrm{F}\right) \\
& 5^{\circ}\left(41^{\circ} \mathrm{F}\right)
\end{aligned}
$$

The device monitors the failure status of each sensor (short circuit or interruption) - if the sensor fails, the yellow LED is lit and the corresponding red LED flashes. The relevant relay is disconnected when it fails.

The device can also be operated as a single thermostat (single sensor). In this case, a $10 \mathrm{k} \Omega$ resistor (part of the product package) must be connected to the unused input.

Independent thermostat function
The device acts as 2 single simple thermostats

Dependent function of thermostats
The thermostats are connected "in series" - i.e. the thermostat 1 is blocked by hermostat 2 . This can be used, for example, when thermostat 1 is operation and the thermostat 2 is blocked (emergency for example, when overheating the device).

Technical parameters	TER-9
Supply	
Number of function:	6
Supply terminals:	A1-A2
Voltage range:	AC 230 V (AC $50 / 60 \mathrm{~Hz}$) galvanically separated, AC/DC 24 V galvanically unseparated
Burden:	max. $4 \mathrm{VA} / 0.5 \mathrm{~W}$
Max. dissipated power	
(Un+terminals):	3 W
Supply voltage tolerance:	$-15 \% ;+10 \%$
Type backup battery:	CR2032 (3V)
Measuring circuit	
Measuring terminals:	T1-T1 and T2-T2
Temperature range:	-40 to $+110^{\circ} \mathrm{C}\left(-40 \mathrm{to}+230^{\circ} \mathrm{F}\right)$
Hysteresis (sensitivity):	in an adjustable range 0.5 to $5^{\circ} \mathrm{C}\left(0.9\right.$ to $\left.9^{\circ} \mathrm{F}\right)$
Diference temperature:	
	adjustable 1 to $50^{\circ} \mathrm{C}\left(34\right.$ to $\left.122^{\circ} \mathrm{F}\right)$
Sensor:	thermistor NTC $12 \mathrm{~K} \Omega$ at $25^{\circ} \mathrm{C}$ ($77^{\circ} \mathrm{F}$)
Sensor failure indication:	displayed on the LCD
Accuracy	
Measuring accuracy:	5\%
Repeat accuracy:	$<0.5^{\circ} \mathrm{C}\left(0.9{ }^{\circ} \mathrm{F}\right)$
Temperature dependance:	$<0.1 \%$ \% ${ }^{\text {C }}$ (${ }^{\text {F }}$)
Output deren	
Number of contacts:	1x changeover for each output/SPDT, (AgNi)
Currentrating:	8A/AC1
Max. breaking capacity:	2000 VA/AC1, $240 \mathrm{~W} / \mathrm{DC}^{\text {c }}$
Switching voltage:	$250 \mathrm{VaC} / 30 \mathrm{VDC}$
Output indication:	symbol ON/OFF
Mechanical life:	10.000.000 operations
Electrical life (AC1):	100.000 operations
Time circuit	up to 3 year
Power back-up:	max. ± 1 sper day, at $23^{\circ} \mathrm{C}\left(73.4{ }^{\circ} \mathrm{F}\right)$
Accuracy:	1 min
Min. switching interval:	min. 10 years
Program circuit	
Number of memory places:	100
Program:	daily, weekly yearly
Data readout:	LCD display, with back light
Other information	
Operating temperatur:	$-10^{\circ} \mathrm{C}$ to $55^{\circ} \mathrm{C}\left(14^{\circ} \mathrm{Fto} 131{ }^{\circ} \mathrm{F}\right)$
Storage temperatur:	$-30^{\circ} \mathrm{Cto} 70^{\circ} \mathrm{C}\left(-22^{\circ} \mathrm{F}\right.$ to $\left.158{ }^{\circ} \mathrm{F}\right)$
Dielectrical strength:	4 kV (power supply - output)
Operating position:	any
Mounting:	DIN rail EN 60715
Protection degree:	\|P20 terminals, IP40 from front panel
Overvoltage category:	III.
Pollution degre:	2
Max. cable size (mm):	solid wire max. 1×2.5 or $2 \times 1.5 /$ with sleeve max. 1×2.5 (AWG 12)
Dimensions:	$90 \times 35 \times 64 \mathrm{~mm}\left(3.5 \times 1.4 \times 2.5{ }^{\prime \prime}\right)$
Weight:	$150 \mathrm{~g} / 5.3$ oz. 2330 V) $113 \mathrm{~g} / 4 \mathrm{oz} .(24 \mathrm{~V})$
Standards:	EN 61812-1; EN 60255-1, EN 60255-26, EN 60255-27 IEC 60730-2-9

Digital thermostat with 6 functions and built-in time switch clock with day, week and year program. You can also limit temperature fun
and courses this way in real time. - Complex control of home and water heating, solar heating, etc.

- Two thermostats in one, two temperature inputs, two outputs with dry contact.
- Maximum universal and variable thermostat including all ordinary ther-
mostat functions. mostat functions.
ferential thermostapendent thermostats, dependent thermostat, diffeenential thermostat, two level thermostat, zone-based thermostat, dead zone thermostat.
- Program setting of output functions, calibration of sensors according to reference temperature (offset).
- The thermostat is subject to the digital clock programs.

Wide operating range of temperature settings, the possibility of measuring in ${ }^{\circ} \mathrm{C}$ and ${ }^{\circ} \mathrm{F}$.
splay of set and measured data on a backlit LCD.

- Power supply: AC 230 V or $24 \mathrm{~V} \mathrm{AC/DC}$ (based on type of device).
- The time switch clock has a battery backup, which retains data in case of a power outage (backup time is up to 3 years).
- Easy replacement of the backup battery through the plug-in module, no
disassembling is required. disassembling is required.
Output contact $1 \times$ changeover/SPDT 8 A/250 V AC1 for each output. 2-MODULE, DIN rail mounting.

Device description

Description of visual elements on the display

Dispaying the day		Oneationmode indiation
		modendation
Staus indication (2nd channe)		Display $12 / 24$ hour mode
Display of date/temperature 1 and 2 of setting menu		Indication of the switching program
Time ispala		
Control buton PRoG/4	TER-9 MAN [GTEO	Control button MAN2/ESC
Reset	man	
Control buton MAN1-		
Connection	Symbol	

Connection
Symbol

1.2 independent single-stage thermostats

2. Depending functions of 2 thermostats

3. Differential thermostat

4. 2-stage thermostat

5. Thermostat with "WINDOW"

6. Thermostat with dead zone

Classic function of thermostat, output contact switched until adjusted temperature is reached. Hysteresis eliminates frequent switching - output oscillation.

Output 15 - 18 is closed, if temperature of both thermostats is bellow an adjusted level. When any thermostat reaches adjusted level, the contact $15-18$ opens.
Serial inner connection of thermostats (logic function AND).

Switching of output corresponds with input which has lower temperatures when diffference is exceeded.
Differencial thermostat is used for keeping two identical temperature e.g. in heating systems (boiler and reservoir), solar ystem lector-reservoir, exchanger), water heating (w er heater, water distribution)etc.

Typical example of use for two-stage thermostat is e.g in boil-er-room, where there are two biolers from which one is main
and the other one is auxiliary. The main boile is managed acand the other one is auxiliary. The main boiler is managed ac-
cording to set temperature and auxiliary boiler is switched in case, temperature falls under set difference. Thus it helps to the main boiler in case, outside temperature dramatically
falls. falls.
In the range of set difference (D) output 15-18 functions as
normal thermostat to input 1 (type 1). In case temperature falls under set difference, second output switches too.

Output is closed (heating) only if temperature is within adOutput is closed (heating) only if temperature is within ad-
justed range. If temperature is out of range, the contact The function is used for protection of gutters against freezing.

In case of thermostat with a "dead zone", it is possible to set temperature T 1 and a difference (respectively a width of dead temperature T1 and a difference respectively a width of dead
zone D . If temperature is higher than T , output contact of cooling switches ON ; if the temperature gets bellow T 1 , the contact switches OFF.
If the temperature gets bellow temperature T, the contact of heating switches ON and it switches OFF when tempera-
ture Tis exceeded. This function can ber ture T is exceeded. This function can be used for example for
automatic air warming and cooling in ventilation so the sit is always within the range T 1 and T .

Ean code

Technical parameters

TEV-1

Supply terminals:

Input:
Max. dissipated power
(Un + terminals):
$\frac{\text { Tolerance of voltage rang }}{\text { Measuring circuit }}$ Measuring terminals: Temperature ranges
thermostat 1:
thermostat 2:
Hysteresis (sensitivity):
Sensor:
-20 to $20^{\circ} \mathrm{C}\left(-4^{\circ} \mathrm{F}\right.$ to 68° F) Hysteresis (sensitivity): Sensor:
Faulty sensor indication: $3^{\circ} \mathrm{C}\left(\pm 1.5^{\circ} \mathrm{C} /\left(-37.4^{\circ} \mathrm{F}\left(\pm 348^{\circ} \mathrm{F}\right)\right.\right.$
 Accuracy of settings (mech.): Dependance on temperature:
Output \qquad 5%
$<0.1 \% /{ }^{\circ} \mathrm{C}(f)$

Output	$<0.1 \% /{ }^{\circ} \mathrm{C}$ (${ }^{\circ}$ F)
Number of contacts:	$1 \times$ changeover/SPDT (AgNi/Silver Alloy)

Max. breaking capacity: Peak current: Peak curren:
Switched voltage Output indication: Mechanical life: Other information Operation temperature Operation position: Protection degree: Overvoltage category: Pollution level: Max. cable size (mm²):

Dimensions:

Weigh:
Standards:
EN 60255-1, EN 60255-26, EN 60255-27, IEC 60730-2-9

Connection

- Two-level thermostat with function "WINDOW" meaning that output is switched in case, the measured temperature is within set range (adjus .
pipes, etc.) heating is on, when temperature falls under set upper leve (e.g. $+5^{\circ} \mathrm{C} /+41^{\circ} \mathrm{F}$) and off in case it falls under lower level (e.g. $-10^{\circ} \mathrm{C} /$ -50°, when heating is not able effectively operate)
- Thermostat is placed in water-proof box with IP65, which allows instal Thermostat status is indicated by LED IZ
- Function monitoring short-circuit and sensor disconnection (break).

Description

Function

TEV-1 is a double thermostat designated for system of protection of roof water- shoots against freezing. The device is placed in a waterproof box
(IP65), sensor with double insulation, which is a part of the device, senses ambientrature. The device operates as zonal thermostat with independent setting of upper and bottom operational temperaturu. In case the ambient
temperature is higher than T1 (upper temperatur), thermostat switches temperature is higher than $T 1$ (upper temperature), thermostat switches heating of watershoots off (icing melts down). In case the ambient temheating off (to big freezing-heating cannot manage to melt the ice).

Symbol

Connection	
Function heating	Function cooling
$\frac{\square M}{(1) T O M}$	$\frac{\square}{(1)(1)(1) O(N)}$
Symbol	

- Single thermostat with possibility of temperature management in adjustable range (it is possible to modify this range or make a special one on
request). Used side, humidity, dustiness, etc.). bles installation outside, with in-built sensor. TEV-2: control and indicat in-built sensor.
TEV-2: control and indication elements are placed under transparent cover.
TEV-3:
easy trol and indication elements are placed directly on the cover Thermostat status is ind ficated by thange of temperature).
Function of monitoring sensor disconnection and short-circuit.

Description TEV-2 (without cover)

Description TEV-3 (cover)

Function TEV-2,TEV-3

TEV- 2 and TEV- 3 are universal single thermostats for universal use. In case tion HEATING), for cooling function (opposite function) is possible to use NC contact of relay (V2).

- Single point thermostat for monitoring and regulation of temperature in
demanding enviroments (humid and contaminated, agressive and dedemanding enviroments humid and contaminated, agressive and decooling boxes...).
- External version in IP65, box for mounting on the wall.
- Built-in thermo-sensor is integrated in the device.
- Two fuctions adjustable by jumper: heating and cooling.
- 3 adjustable (by jumper) ranges of temperature, and fine adjustment Tadjustable bity jumpere
- Potentialless NO-SPST contact 12 A AC1 switching

Connection

Description of function

Device is standardly supplied with jumper L-15 (3 -wire connection).
For the correct function of device is neccesary sensor-side down device

EAN Ode
RHT: 185555888137263

Technical parameters	RHT-1
Function:	hygro-thermostat
Supply terminals:	A1-A2
Voltage range:	$24-240 \mathrm{VAC} / \mathrm{DC}$ ($\mathrm{AC} \mathrm{50/60} \mathrm{Hz)}$
Input:	max. 1 VA/0.5 W
Max. dissipated power	
(Un+terminals):	2.5 W
Tolerance of voltage range:	-15%; 10%
Measuring circuit	
Temperature range:	$0^{\circ} \mathrm{Coto} 60^{\circ} \mathrm{C}\left(32^{\circ} \mathrm{F}\right.$ to $\left.140^{\circ} \mathrm{F}\right)$
Humidity range:	50 až 90%
Temperature hysterisis:	$2.5{ }^{\circ} \mathrm{C}\left(4.5{ }^{\circ} \mathrm{F}\right)$
Humidity hysterisis:	4\%
Sensor:	internal
Indication of sensor's faut:	red LED flashing
Accuracy	
Setting accuracy (mechanical):	5\%
Long-term stability of	
humidity:	typical $<0.8 \% /$ /year
Output	
Number of contacts:	$1 \times \mathrm{NO}-$ SPST (AgSO_{2})
Currentrating:	$16 \mathrm{~A} / \mathrm{AC} 1,10 \mathrm{~A} / 24 \mathrm{VDC}$
Switched output:	$4000 \mathrm{VA} / \mathrm{AC1}, 300 \mathrm{~W} / \mathrm{DC}$
Switched voltage:	$250 \mathrm{VAC} / 24 \mathrm{VDC}$
Output indication:	red LED shines
Mechanical life:	30.000 .000 operations
Electrical life:	70.000 operations
Other information	
Operational temperature:	$-20^{\circ} \mathrm{Cto} 60^{\circ} \mathrm{C}\left(-4 \mathrm{~F}\right.$ to $\left.140^{\circ} \mathrm{F}\right)$
Storing temperature:	$-30^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}\left(-22^{\circ} \mathrm{F}\right.$ to $\left.158{ }^{\circ} \mathrm{F}\right)$
Dielectrical strengh:	2.5 kV (supply-output)
Operational position:	vertical, with correct orientation
Mounting:	din rail en 60715
Protection degre:	IP40 from front panel, IP10 on terminals
Overvoltage category:	III.
Pollution degree:	2
Max. cable size (mm):	max. 2×2.5, max. 1×4 with sleeve max. 1×2.5, max. 2×1.5 (AWG 12)
Dimensions:	$90 \times 17.6 \times 64 \mathrm{~mm}\left(3.5^{\prime \prime} \times 0.7^{\prime \prime} \times 2.5^{\prime \prime}\right)$
Weight:	$63 \mathrm{~g}(2.2$ oz.)
Standards:	EN 60225-1, EN 60255-26, EN 60255-27, IEC 60730-2-9

Hygro-thermostat for temperature monitoring and regulation in range $0^{\circ} \mathrm{C}$ to $60^{\circ} \mathrm{C}\left(32^{\circ} \mathrm{F}\right.$ to $\left.140^{\circ} \mathrm{F}\right)$ and relative humidity monitoring and regu-
lation in range 50 to 90%. stang of up
tion permanently ON/OFF.
Sensor is a part of the device
-Function of sensor control (damage, disturbances,...).

- Fixed setting of temperature hysteresis at $2.5^{\circ} \mathrm{C}\left(4.5^{\circ} \mathrm{F}\right)$ and humidity at 4%.

Device description

	$\begin{gathered} 15{ }^{18} \\ c^{2} \end{gathered}$	Output contacts (15-18)
		Ventilative upper oppenings
Indication of supply voltage	-	Output indication
Function setting	(8)	
Temperatur seting	(3):	
Humidity setting	\%	
		Ventilative lower openning
	Q2	Supply voltage termi

Funcions

Choice of function Relay switched under the following conditions

A	T> Tset	or	RH > RHset
B	$T<$ Tset	or	RH $>$ RHset
c	$T>$ Tset	or	RH < RHset
D	T<Tset	or	RH < RHset
E	$T<$ Tset	and	RH < RHset
F	$T>$ Tset	and	RH < RHset
G	$T<$ Tset	and	RH > RHset
H	$T>$ Tset	and	RH $>$ RHset
on	relay permanently ON		
OfF	relay permanently OfF		

This device is designated for monitoring of parameters of environment (meaning temperature and relative humidity) in switchboards. It enables
setting of eight conditions of constact closing and therefore it is usable setting of eight conditions of constact closing and therefore it is usable
for various types of load (e.g. fans, heating air-conditioning dehydrating for various types of load (e.g. fans, heating, air-conditioning, dehydrating
units....) While inst
ises by peringit is neccessary to take into account the fact that hysterisis vironment.
The device is 2 Per The device is equipped by sensor fault detection. In case of sensor fault, ex-
ceeding allowed limits for temperature- $-30^{\circ} \mathrm{C}\left(-22^{\circ} \mathrm{F}\right.$ and $+80^{\circ} \mathrm{C} 1176^{\circ} \mathrm{F}$, fo ceeding allowed limits sfor temperature-30 ${ }^{\circ}\left(1-22^{\circ}{ }^{\circ}\right.$ and $+80^{\circ} \mathrm{C}$ / $17{ }^{\circ}{ }^{\circ}$; for than 50% (due to e.g. high ambient disturbances) contact opens and sensor fault is indicated. Sensor fault doesn't have influence on function permanently ON or pemanently OFF.
Note: In case the conditions for switching are not applied, relay is open.
Symbol
Connection - Single hygrostat is used for regulation of hum
ments (washdown, greenhouse, refrigeration). - External version in IP65, box for mounting on the wall. - Built-in hygro-sensor is integrated in the device. - Two functions adjustable by jumper: moisting and drying. - 3 adjustable (by jumper) levels of hysteresis.

Thermodrive is intended for opening or closing valves in heating, cooling or air conditioning systems. It is also suitable for use in a floor heating or air conditioning systems.
ing or ceiling cooling manifolds.

- Available in NO (open without voltage), NC (closed without voltage) and for 230 V and 24 V .
- The internal principle of operation of the thermo drive mechanism $=$ its movement so that the valve opens/closes is provided by an electric
heating element with expansion material, which expands due to temwhich expands due to temThe thermodrive is maintenance-free an
-The thermodrive is fitted with a free and works completely silently. he thermodrive is fitted with a metal nut $\mathrm{M} 30 \times 1.5$, thanks to which it
becomes a 100% fixed part of the valve with this corresponding thread becomes a 100% fixed part of the valve with this corresponding thread
size after installation. size after installation.
The stated nut size predetermines the use of a thermocouple with
valves from manufacturers such as Herz, HoneyWell. Danfoss, Oventrop and others.

Telva thermodrive:

- is characterized by absolutely quiet and maintenance-free operation - is designed for installation - control of heating and cooling systems atuatoron the controled valve using an M30 any wo

Type of use:
Underfloor heating - the RFTC-50/G wireless controller measures the room temperature and, based on the set program, sends a command to the RFSA-66M switching element to open/close the TELVA thermo drive on the distributor.

T65 (95): time, which sensor needs to heat up on 65 (95) \% of ambient T65 (95): time, which sensor needs to heat up on
temperature of environment, in which is located.

Thermister temperature sensors are made of Negative Temperature Coefficient (NTC) embedded in a PVC or metal sleeve with a thermallyconductive se

- lead-in cable to sensor TC is made of wire CYSY $2 \mathrm{D} \times 0.5 \mathrm{~mm} / 0.02^{\prime \prime}$. - Sensor TZ
- cable VO3SS-F $2 \mathrm{D} \times 0.5 \mathrm{~mm} / 0.02^{\prime \prime}$ with silicone insulation for use in high temperature applications
- Sensor Pt100
- shielded
- Temperature sensors can be connected directly to the terminal block.
- Cable lengths can not be changed, connected or modified.

Resistive values of sensors in dependance on temperature

Temperature $\left(\rho / C^{\prime} / \mathrm{F}\right)$	Sensor NTC $(\mathrm{K} \Omega)$	Sensor Pt100 ($\Omega)$
20168	14.7	107.8
3086	9.8	111.7
$40 / 104$	6.6	115.5
$50 / 122$	4.6	119.4
$60 / 140$	3.2	123.2
$70 / 158$	2.3	127.1

Tolerance of sensor NTC $12 \mathrm{k} \Omega$ is $\pm 5 \%$ by $25^{\circ} \mathrm{C} / 77^{\circ} \mathrm{F}$.
Long-term resistence stability by sensor Pt100 is 0.05% (10000 hours).

Diagramm of sensor warm up via air

FVC - reaction to water temperature from $22.5^{\circ} \mathrm{C}$ to $58^{\circ} \mathrm{C}$ from $72.5^{\circ} \mathrm{F}$ to $136.4^{\circ} \mathrm{F}$).
silicone - reaction to water temperature from $22.5^{\circ} \mathrm{C}$ to $63.5^{\circ} \mathrm{C}$ (from 72.5° F to 144.5° F).

Training

Main instructions for correct use of ELKO EP products

Technical support

If you are intersted in our products, visit one of our free professional trainings in the Czech Republic
All trainings at: www.elkoep.com/trainings-and-exhibitions

In case of technical questions, contact our technical support by phone or email:

Alternatively, you can contact us using the contact form on our website: www.elkoep.com/tech-support

To ensure correct and perfect function of a device and its safe operation it is necessary to ensure and observe several main regulations

1. Device supply

It is necessary to ensure continuous supply of the device without drops and voltage peaks. It is mainly important (e.g. dimmers) where here is
synchronization managed by sine wave of the main and fault in the main ca cause unreliable function of the devic
is necessary to observe allowed tolerance of the size of supply voltage which is given by technical party
2. Protection of the device
it is necessary to ensure protection of the device by adequate elements of overvoltage protection - by fuses, by surge arrestors
3. Elimination of disturbances on input circuits
it is recommended to eliminate disturbances on control inputs of devices by suitable elements (R - C elements) and thus minimize creation of inductive voltage on incoming wires
(e.g. connected glow lamps)

4. Opereting conditions

- to assure the granted life and correct functions of device, there is not recommended to leave the device in extreme conditions that could negative way influence the correct device functions - permanent temperature influence over $70^{\circ} \mathrm{C}$, aggressive exhalations, chemicals, high relative humadity over 95%, high electromagnetic field or microwave radiation
cement close to electromagnetic interference sourc
devices are connected to circuit with elequirements in accordance with EU Directive 89/336/EEC. Notwithstanding it is necessary to pay attention when ables. It is recommended that device coctrical appliances that produce electromagnetic interference (contactors, motors), and pay attention to close power device is connected to circuit with contactors or moters it is supply and control inputs) are possibly short and go separately from power cables. In case the varistors or surge voltage protector
when you use AL wires, it is necessary to follow requirements of ČSN standard 370606: 1959 and ČSN 370606 amendment 2: 1992

5. Device handling and using
nut terminals do nner device construction
do not overload input re falls and excessive vibrations that could demage relays contacts
do not overload input relay's contacts, especially when using loads with other category then AC1
when at switching of biq loads the relay contacts get sealed it is necessary to use inserted contactor or power relay tuned to required load for given application

Description of used protection elements in device

All time and monitoring relays from our assortment are equipped with protective elements (varistors) against possible overvoltage in supply main. Limit voltage of used varistors is 275 V . At short-time overvoltage in supply main varistor decrease its leak resistor and accumulate arosen overvoltage. When this overvoltage behave as short-time peak, varistor is able to react and protect the device against negative influences. As other protection elements there are used transils and zener diodes that eliminate overvoltage impulses in supply and input circuits of device (e.g. when switching inductive loads). In case of switching inductive loads it is recommended to separate a supply of power element (motors, contactors etc.) from supply of measuring and control device inputs.

On the charts bellow you can see oscilographic running of disconnecting of loads (contactors) and reaction of protective elements to arosen voltage pikes.
on $230 \mathrm{~V} / \mathrm{AC}$ without R -C member

Process of disconnection of contactor with coil

Process of disconnection of contactor with coil and limited varistor on 230V/AC

E Osciloscope

148	Product loadability						
	PRODUCT	SOU-2	RHV-1; SOU-3; TEV-4	CRM-4; CRM-46; HRH-7; MR-41; MR-42; SHT-1; SHT-4; SHT-6; SMR-B; SOU-1; RHT-1;TER-3A;TER-3B;TER3C; TER-3D; TER-3E; TER-3F; TER-3G;TER-3H;VS116K; VS116U; VS316/24V VS316/230V	CRM-82TO; CRM-83J; CRM-93H; TER-7; CRM-61; HRH-5; HRN-54; HRN-54N; HRN-55; HRN-55N; HRN-56; HRN-57; PRI-51; PRI-52; PRI-53; HRF-10; TER-9	HRH-6	COS-2; CRM-2H; CRM-2HE; CRM-91 HE; HRH-1; HRN-33; HRN-34; HRN-35; HRN-37; HRN-41; HRN-42; HRN-43; HRN-43N; HRN-63; HRN-64; HRN-67; PDR-2; PRI-41; PRI-42; PRM-91H; SJR-2; TER-4; TEV-1; TEV-2; TEV-3
	TYPE OF LOAD	Material of contact AgSnO_{2} contact 8 A	Material of contact AgSnO_{2} contact 12 ${ }^{2}$	Material of contact AgSnO_{2} contact 16 A	Material of contact AgNi contact 8A	Material of contact AgNi and contact 10A	Material of contact AgNi contact 16 A
	$\stackrel{\square}{\cos \varphi 20.95}$	250V/8A	250V/12A	250V/16A	250V/8A	250V/10A	250V/16A
	$-\mathrm{M}-$	250V/5A	250V/3.7A	250V/5A	250V/3A	250V/3A	250V/5A
	$\text { AC3 }-\mathrm{M}-$	250V/4A	250V/2.2A	250V/3A	250V/2A	250V/2A	250V/3A
	$: \begin{gathered} \square=0 \\ \text { Acsampensated } \\ \text { uncompen } \end{gathered}$	x	$230 \mathrm{~V} / 2.2 \mathrm{~A}$ (510VA)	230V/3A (690VA)	230V/1.5A (345VA)	230V/2A (460VA)	230V/3A (690VA)
		x	$230 \mathrm{~V} / 2.2 \mathrm{~A}$ (510VA) till max output C=14UF	$230 \mathrm{~V} / 3 \mathrm{~A}(690 \mathrm{VA})$ till max output C=14UF	x	x	x
		250W	1120W	1000W	300W	500W	800W
	${ }_{\text {Ac6a }}^{3} 3 \mid \xi$	250V/4A	x	x	x	x	x
	Am AC7b	250V/1A	250V/2.2A	250V/3A	250V/1A	250V/2A	250V/3A
		250V/1A	250V/7.5A	x	250V/1A	250V/6A	250V/10A
	AC13	x	250V/4.5A	x	x	250V/3.8A	250V/6A
	$\overline{\mathrm{ACC}} \overline{\mathrm{~m}}$	250V/4A	250V/4.5A	250V/6A	250V/3A	250V/3.8A	250V/6A
	$\sqrt{\overline{\mathrm{m}} \mathrm{~m}_{\mathrm{AC} 15}}$	250V/3A	250V/4.5A	250V/6A	250V/3A	250V/3.8A	250V/6A
	$\stackrel{\square}{\mathrm{DC} 1}$	30V/8A	24V/12A	24V/10A	24V/8A	24V/10A	24V/16A
	$\text { DC3 }-\mathrm{M}-$	30V/3A	24V/4.5A	24V/3A	24V/3A	24V/3.8A	24V/6A
	$\mathrm{DC5}^{-\mathrm{M}}-$	30V/2A	24V/3A	24V/2A	24V/2A	24V/2.5A	24V/4A
	\square	30V/8A	24V/12A	24V/6A	24V/8A	24V/10A	24V/16A
	$\overline{\mathrm{DC} 13} \overline{\mathrm{~m}}$	30V/2A	24V/1.5A	24V/2A	24V/2A	24V/1.3A	24V/2A
	$\overline{\mathrm{DC} 14}$	x	24V/1.5A	x	x	24V/1.3A	24V/2A

Product loadability

Problematic choice of suitable relay contact for a particular load switched with a product is described below. Mostly we experience problems with incorrect choice of load (mea-
ning incorrect relay for a particular load) which results in permanent switching of contact sealing) or damage on relay contact - which then results in malfunction. ning incorrect relay for a particular baad which results in permanent switching of contact sealing) or damage on relay contact - which then results in malfunction.

Category of use	Typical use	En
AC current, $\cos \varphi=\mathrm{P} / \mathrm{S}(-)$		
AC-1	Non-inductive or slightly inductive load, resistance furnace Includes all appliances supplied by AC current with power factor $(\cos \varphi) \geq 0.95$ Examples of usage: resistance furnace, industrial loads	60947-4
AC-2	Motors with slip-ring armature, switching off	60947
AC-3	Motors with short-circuit armature, motor switching when in operation This category applies to switching off motors with short-circuit armature while in operation. While switching, contactor switches current which is 5 up to 7 times rated current of motor.	60947-4
AC-4	Electro-motors with short-ircuit armature: start up, braking by backset, changeover	60947
AC-5a	Switching of electrical gas-filled lights, fluorescent lights	60947-4
AC-5b	El. bulb switching Enables low contact loading due to resistance of cold fiber is many times smaller that the one of hot fiber.	60947-4
AC-6a	Switching of tranformers	60947-4
AC-6b	Switching of capacitors	60947-4
AC-7a	Switching low inductive loads of home appliances and similar applications	60947
AC-7b	Load of motors for home appliances	60947
AC-8a	Switching of hermetically sealed motors of cooling compressors with manual reset switches against overload Hermetically sealed cooling compressors have to be placed in one box without external shaft or shaft padding and motor must operate with cooling liquid	60947
AC-8b	Switching of hermetically sealed motors of cooling compressors with manual reset switches against overload Hermetically sealed cooling compressors have to be placed in one box without external shaft or shaft padding and motor must operate with cooling liquid	60947
AC-12	Switching of semiconductor loads with separation transformers	60947-5
AC-13	Switching of semiconductor loads with separation transformers	60947-5-1
AC-14	Switching of low electro-magnetic load (max. 72 VA)	60947-5-1
AC-15	Management of alternating electro-magnetic loads This category applies to switching inductive loads with input for closed electro-magnetic circuit higher than 72 VA Use: switching coils of contactors	60947-5
AC-20	Connecting and disconnecting in unloaded states	60947-3
AC-21	Switching resistive loads, including low loading	60947-3
AC-22	Switching of mixed resistive and inductive loads, including low overloading	60947-3
AC-23	Switching of motor loads or other high inductive loads	60947-3
AC-53a	Switching of motors with short-circuit armature with semiconductor contactors	60947

DC-1	Non-inductive or low inductive load, resistive furnaces	60947-4
DC-3	Shunt motors: start-up, braking by backset, reversion, resistive braking	60947-4-1
DC-5	Series motor: start-up, braking by backset, reversion, resistive braking	60947-4-1
DC-6	Non-inductive or low inductive loads, resistive furnaces - el. bulbs	60947-4-1
DC-12	Management of resistive loads and fixed loads with insulation by opto-electric element	60947-5-1
DC-13	Switching of electromagnets	60947-5-1
DC-14	Switching of electromagnetic loads in circuits with limiting resistor	60947-5-1
DC-20a(b)	Switching and breaking without load(a: frequent switching, b: occasional switching)	60947-3
DC-21a(b)	Switching ohmic loads including limiting overloading (a: frequent switching, b: occasional switching)	60947-3
DC-22a(b)	Switching of compound ohmic and inductive loads including limited overloads (e.g. shunt motors) (a: frequent switching, b: random switching)	60947-3
DC-23	Switching of highly inductive loads (e.g. series motors)	60947-3

 inconstancy of parameters of switched device. Manufacturer of relays records always guaranteed parameters in ideal conditions which are done by a norm (temperature, pressure.

Basic types of materials which are used for production of contacts for high--performance relay are:
a) AgCd - suitable for switching ohmic loads. Before of harmfulness of Cd, this type of contact is remite
b) AgNi -designated for switching resistive loads, good quality switching and conducting (contact doesn't oxidate) small currents/voltages, itis not designated for surge currents
c) AgSn or AgSno 2_{2}-suitatable for forswitching loads with inductive component, not suitable for switching small currents/voltages, it is more resistive to surge currents, suitable for DC voltage switching, less suitable for switching loads of ohmic type.
d) Wf (wolfram)-special contact designated for switching surge currents with inductive component.

150 Products packing

Packing of 1-MODULE relay - 1 pc

Packing of 1-MODULE relay - 10 pcs

Packing of 1-MODULE relay with accessories

Packing of 2-MODULE relay - 1 pc

Packing of 3-MODULE relay - 1 pc

3-MODULE DESIGN

front panels 3 -MODULE

HRN-41

\circ		\square
\circ	\bigcirc	\bigcirc
\circ		\circ
\circ	\bigcirc	\bigcirc

HRN-56
OO
O
O

Level sensor

SHR-1

$\vdots \quad 120$
 noms mans mems

TEV-1, TEV-2

HRH-7

$\frac{\text { Multifunction time relay CRM-91H.CRM-93H }}{\text { - for electric appliances, where is necessary to }}$
-for electric appliances, where is necessary to change the exact timing - controlling of the illumination, heating, motors, machines, ventilators, contactors..

Multifunction time relay with external potentiometer CRM-91HE -time adjusting via external operating unit, operating on panel, switchboard

$\frac{\text { Multifunction time relay CRM-161 }}{\text {-for electronic appliances, light co }}$

- for electronic appliances, light control, heating, motors, fans...

Time relay PLUG-IN type PTRM-216TP
serves to control light signallization, heating, motor and fan control etc.

Asymmetric flasher CRM-2H
egular rooms ventilation, cyclic humidity exhaustion, illumination controlling, circulation pump, flash, warning appliances, regular pum down, regular irrigation via electromagnetic valve

Intelligent staircase automat with possible signalling before switch off CRM-46 - on-coming switch off signalling (flash $=$ comfort + safety together)

$\frac{\text { Delay OFF without supply voltage CRM-82TO }}{\text { - delayed wack-up }}$
switch of at current failue emergency illumination emergency respirator)

Singlefunction time relay CRM-87J
time switch, using for run down the pump after switch off the heating switching of ventilators ...

$\frac{\text { Starcase switch CRM-4 }}{\text { staircase automatic systems, ventilators switching, for multiplace operating }}$ illumination on the staircases and halls..

$\frac{\text { Room energy saving relay CRM-101 }}{\text { replacement of the card swith }}$
placement of the card switch (energy saving in the absence of guests) The relay controls the hotel room contactor by means of a magnetic doo contact and a motion detector

Digital time switch SHT- $1 / 2$
-for controlling of all appliances that depend on real time, appliances could be controlled in regular cycles, or according to adjusted program (blocking of main door out of working hours or night
combination with other devices, controlling could be combinated (rooms ventilation, irrigation controlling, bell at school or in church...)
$\frac{\text { Delay on star/delta CRM- } 2 \text { T }}{\text { - motor starting more than }}$
解 than 3 kW, electronic switchover from mode start to mode operation with device CRM-2T, what assures exact timing

Modular contactor VS120, VS220, V5420, V5425

- to switch circuits for supply and control of heating, lights, air-conditioning
and other el. devices.
Switches loads $A C-1, A C-3, A C-7 a, A C-7 b, A C-15$.

$\frac{\text { Digital time switch SHT-1, } \mathrm{SHT}-1 / 2}{\text { for controlling of }}$
for controlling of all appliances that depend on real time, in daily or weekly mode

Modular contactors VS440, V5463
to switch supply and control circuits for heating, air-conditioning and other el. devices, switching 3 -phase motors
Switches loads $\mathrm{A}-1, \mathrm{AC}-3, \mathrm{AC}-7$ a, $\mathrm{AC}-7 \mathrm{~b}$, and $\mathrm{AC}-15$

Staircase automat with dimming DIM-2 step by step (fluent) dim up, adjusted time is ON and fluent dim down (e.g. possible to adjust permanent shine to min. brightness everlasting light) aircases), garden lighting

Memory relay MR-41, MR-42

-because of 2 -wire paralle
during the installation
during the installation

$\frac{\text { swert relays } \sqrt{5}}{- \text { switching of higher load than is capacity of switched unit }=\text { repeater }}$ -assistant light controlling, signalling, boilers, ..

They will help you, they will
intensify and extend..."

Monitoring current relay PRI-51, PRI-32

- current-limiting relay (on one branch two appliances, which never work together), controlling systems, motors, heating, current indication, controlling of ${ }^{1}$-phase motor run down, during the installation of main housing switchboard could be controlled via eye, if the cooker is not switched
in connection with current transformers, it is possible to extend current ranges up to 600 A , which makes more things possible

Relay monitoring power factor COS-2

- monitors power-factor in 3 -phase mains / unloading of motors, pumps, lift systems

00000

Monitoring voltage relay HRN-43
-regulation of voltage from generator, water el. plants, 3 -phase control in - regulation
the main

Others just resell

HOWEVER, WE DEVELOP AND MANUFACTURE PRODUCTS OURSELVES!

ELKO EP, S.r.O. | Palackeho 493 | 76901 Holesov, Vsetuly |Czech Republic phone: +420 573514221 | fax: +420 573514227 |elko@elkoep.com | www.elkoep.com
Published: 02/2021 | Modifications or amendments reserved | © Copyright ELKO EP, s.r.o. | ${ }^{\text {st }}$ edition

